908 resultados para Cellulose nanocrystals


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective To investigate the effect of nutrient stimulation of gut hormones by oligofructose supplementation on appetite, energy intake (EI), body weight (BW) and adiposity in overweight and obese volunteers. Methods In a parallel, single-blind and placebo-controlled study, 22 healthy overweight and obese volunteers were randomly allocated to receive 30 g day−1 oligofructose or cellulose for 6 weeks following a 2-week run-in. Subjective appetite and side effect scores, breath hydrogen, serum short chain fatty acids (SCFAs), plasma gut hormones, glucose and insulin concentrations, EI, BW and adiposity were quantified at baseline and post-supplementation. Results Oligofructose increased breath hydrogen (P < 0.0001), late acetate concentrations (P = 0.024), tended to increase total area under the curve (tAUC)420mins peptide YY (PYY) (P = 0.056) and reduced tAUC450mins hunger (P = 0.034) and motivation to eat (P = 0.013) when compared with cellulose. However, there was no significant difference between the groups in other parameters although within group analyses showed an increase in glucagon-like peptide 1 (GLP-1) (P = 0.006) in the cellulose group and a decrease in EI during ad libitum meal in both groups. Conclusions Oligofructose increased plasma PYY concentrations and suppressed appetite, while cellulose increased GLP-1 concentrations. EI decreased in both groups. However, these positive effects did not translate into changes in BW or adiposity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ancestral human populations had diets containing more indigestible plant material than present-day diets in industrialized countries. One hypothesis for the rise in prevalence of obesity is that physiological mechanisms for controlling appetite evolved to match a diet with plant fiber content higher than that of present-day diets. We investigated how diet affects gut microbiota and colon cells by comparing human microbial communities with those from a primate that has an extreme plant-based diet, namely, the gelada baboon, which is a grazer. The effects of potato (high starch) versus grass (high lignin and cellulose) diets on human-derived versus gelada-derived fecal communities were compared in vitro. We especially focused on the production of short-chain fatty acids, which are hypothesized to be key metabolites influencing appetite regulation pathways. The results confirmed that diet has a major effect on bacterial numbers, short-chain fatty acid production, and the release of hormones involved in appetite suppression. The potato diet yielded greater production of short-chain fatty acids and hormone release than the grass diet, even in the gelada cultures, which we had expected should be better adapted to the grass diet. The strong effects of diet on hormone release could not be explained, however, solely by short-chain fatty acid concentrations. Nuclear magnetic resonance spectroscopy found changes in additional metabolites, including betaine and isoleucine, that might play key roles in inhibiting and stimulating appetite suppression pathways. Our study results indicate that a broader array of metabolites might be involved in triggering gut hormone release in humans than previously thought. IMPORTANCE: One theory for rising levels of obesity in western populations is that the body's mechanisms for controlling appetite evolved to match ancestral diets with more low-energy plant foods. We investigated this idea by comparing the effects of diet on appetite suppression pathways via the use of gut bacterial communities from humans and gelada baboons, which are modern-day primates with an extreme diet of low-energy plant food, namely, grass. We found that diet does play a major role in affecting gut bacteria and the production of a hormone that suppresses appetite but not in the direction predicted by the ancestral diet hypothesis. Also, bacterial products were correlated with hormone release that were different from those normally thought to play this role. By comparing microbiota and diets outside the natural range for modern humans, we found a relationship between diet and appetite pathways that was more complex than previously hypothesized on the basis of more-controlled studies of the effects of single compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The resonance effect of microcrystalline cellulose/castor oil electrorheological (ER) suspensions was studied in a compressed oscillatory squeeze flow under external electric fields. The resonance frequency first increases linearly with increasing external held, and then shift to high-field plateau. The amplitudes of resonance peak increase sharply with the applied fields in the range of 0.17-1.67kV/mm. The phase difference of the reduced displacement relative to the excitation force inverses in the case of resonance. A viscoelasticity model of the ER suspensions, which offers both the equivalent stiffness and the viscous damping, should be responsible for the appearance of resonance. The influence of the electric field on the resonance frequency and the resonance hump is consistent qualitatively with the interpretation of our proposed model. Storage modulus G' was presented for the purpose of investigating this influence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background: Advancing age is linked to a decrease in beneficial bacteria such as Bifidobacterium spp. and reduced aspects of innate immune function. Objectives: We investigated whether daily consumption of a probiotic [Bacillus coagulans GBI-30, 6086 (BC30); GanedenBC30] could improve immune function and gut function in men and women aged 65–80 y, using a double-blind, placebo-controlled crossover design. Method: Thirty-six volunteers were recruited and randomly assigned to receive either a placebo (microcrystalline cellulose) or the probiotic BC30 (1 3 109 colony-forming units/capsule). Volunteers consumed 1 treatment capsule per day for 28 d, followed by a 21-d washout period before switching to the other treatment. Blood and fecal samples were collected at the beginning and end of each treatment period. Fecal samples were used to enumerate bacterial groups and concentrations of calprotectin. Peripheral blood mononuclear cells (PBMCs) were extracted from whole blood to assess natural killer cell activity and lipopolysaccharide (LPS)-stimulated cytokine production. C-reactive protein concentrations were measured in plasma. Results: Consumption of BC30 significantly increased populations of Faecalibacterium prausnitzii by 0.1 log10 cells/mL more than during consumption of the placebo (P = 0.03), whereas populations of Bacillus spp. increased significantly by 0.5 log10 cells/mL from baseline in volunteers who consumed BC30 (P = 0.007). LPS-stimulated PBMCs showed a 0.2 ng/mL increase in the anti-inflammatory cytokine IL-10 28 d after consumption of BC30 (P < 0.05), whereas the placebo did not affect IL-10, and no overall difference was found in the effect of the treatments. Conclusions: Daily consumption of BC30 by adults aged 65–80 y can increase beneficial groups of bacteria in the human gut and potentially increase production of anti-inflammatory cytokines. This study shows the potential benefits of a probiotic to improve dysbiosis via modulation of the microbiota in older persons. J Nutr doi: 10.3945/jn.114.199802.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a novel but simple enteric coated sphere formulation containing probiotic bacteria (Lactobacillus casei). Oral delivery of live bacterial cells (LBC) requires live cells to survive firstly manufacturing processes and secondly GI microbicidal defenses including gastric acid. We incorporated live L. casei directly in the granulation liquid, followed by granulation, extrusion, spheronization, drying and spray coating to produce dried live probiotic spheres. A blend of MCC, calcium-crosslinked alginate, and lactose was developed that gave improved live cell survival during manufacturing, and gave excellent protection from gastric acid plus rapid release in intestinal conditions. No significant loss of viability was observed in all steps except drying, which resulted in approximately 1 log loss of viable cells. Eudragit coating was used to protect dried live cells from acid, and microcrystalline cellulose (MCC) was combined with sodium alginate to achieve efficient sphere disintegration leading to rapid and complete bacterial cell release in intestinal conditions. Viability and release of L. casei was evaluated in vitro in simulated GI conditions. Uncoated spheres gave partial acid protection, but enteric coated spheres effectively protected dried probiotic LBC from acid for 2 h, and subsequently released all viable cells within 1h of transfer into simulated intestinal fluid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A segmented flow-based microreactor is used for the continuous production of faceted nanocrystals. Flow segmentation is proposed as a versatile tool to manipulate the reduction kinetics and control the growth of faceted nanostructures; tuning the size and shape. Switching the gas from oxygen to carbon monoxide permits the adjustment in nanostructure growth from 1D (nanorods) to 2D (nanosheets). CO is a key factor in the formation of Pd nanosheets and Pt nanocubes; operating as a second phase, a reductant, and a capping agent. This combination confines the growth to specific structures. In addition, the segmented flow microfluidic reactor inherently has the ability to operate in a reproducible manner at elevated temperatures and pressures whilst confining potentially toxic reactants, such as CO, in nanoliter slugs. This continuous system successfully synthesised Pd nanorods with an aspect ratio of 6; thin palladium nanosheets with a thickness of 1.5 nm; and Pt nanocubes with a 5.6 nm edge length, all in a synthesis time as low as 150 s.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present work is to evaluate the effects of the surface properties of unrefined eucalyptus pulp fibres concerning their performance in cement-based composites. The influence of the fibre surface on the microstructure of fibre-cement composites was evaluated after accelerated ageing cycles, which simulate natural weathering. The surface of unbleached pulp is a thin layer that is rich in cellulose, lignin, hemicelluloses, and extractives. Such a layer acts as a physical and chemical barrier to the penetration of low molecular components of cement. The unbleached fibres are less hydrophilic than the bleached ones. Bleaching removes the amorphous lignin and extractives from the surface and renders it more permeable to liquids. Atomic force microscopy (AFM) helps in understanding the fibre-cement interface. Bleaching improved the fibre- cement interfacial bonding, whereas fibres in the unbleached pulp were less susceptible to the re-precipitation of cement hydration products into the fibre cavities (lumens). Therefore, unbleached fibres can improve the long-term performance of the fibre-cement composite owing to their delayed mineralization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work evaluated the effects of accelerated carbonation on mechanical and physical characteristics of cementitious roofing tiles reinforced with vegetable fibre. The maximum load and toughness of the tiles have increased approximately 25% and 80% respectively as a consequence of the accelerated carbonation. Water absorption and apparent porosity decreased with carbonation while bulk density increased as a clear indication of the densification of the composite. The improvement on the mechanical performance suggests that the fibres retained their tensile strength in the inorganic matrix. Results of specimens extracted from the tested tiles after approximately 480 days in laboratory environment and further aged indicate that soak and dry cycles promoted some leaching of hydration products and more voids and lower density when performed before carbonation. The results indicate the utilization of accelerated carbonation as an effective procedure to mitigate the degradation suffered by the cellulose fibres in the less aggressive medium. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of an experimental study of resistance-curve behavior and fatigue crack growth in cementitious matrices reinforced with eco-friendly natural fibers obtained from agricultural by-products. The composites include: blast furnace slag cement reinforced with pulped fibers of sisal, banana and bleached eucalyptus pulp, and ordinary Portland cement composites reinforced with bleached eucalyptus pulp. Fracture resistance (R-curve) and fatigue crack growth behavior were studied using single-edge notched bend specimens. The observed stable crack growth behavior was then related to crack/microstructure interactions that were elucidated via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Fracture mechanics models were used to quantify the observed crack-tip shielding due to crack-bridging. The implications of the results are also discussed for the design of natural fiber-reinforced composite materials for affordable housing. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seeds of Bixa orellana (L.) have a sclerified palisade cell layer, which constitutes a natural barrier to water uptake. In fact, newly fully developed B. orellana seeds are highly impermeable to water and thereby dormant. The purpose of this work is to investigate, from a developmental point of view, the histochemical and physical changes in the cell walls of the seed coat that are associated with the water impermeability. Seed coat samples were analyzed by histochemical and polarization microscopy techniques, as well as by fractionation/HPAEC-PAD. For histochemical analysis the tissue samples were fixed, dehydrated, embedded in paraffin and the slides were dewaxed and tested with appropriate stains for different cell wall components. Throughout the development of B. orellana seeds, there was a gradual thickening of the seed coat at the palisade region. This thickening was due to the deposition of cellulose and hemicelluloses in the palisade layer cell walls, which resulted in a highly water impermeable seed coat. The carbohydrate composition of the cell walls changed dramatically at the late developmental stages due to the intense deposition of hemicelluloses. Hemicelluloses were mainly deposited in the outer region of the palisade layer cell walls and altered the birefringent pattern of the walls. Xylans were by far the most abundant hemicellulosic component of the cell walls. Deposition of cellulose and hemicelluloses, especially xylans, could be responsible for the impermeability to water observed in fully developed B. orellana seeds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth of molds on paper containing cellulose is a frequent occurrence when the level of relative air humidity is high or when books become wet due to water leaks in libraries. The aim of this study is to differentiate the bioreceptivity of different types of book paper for different fungi. Laboratory tests were performed with strains of Aspergillus niger, Cladosporium sp., Chaetomium globosum and Trichoderma harzianum isolated from books. Four paper types were evaluated: couche Men (offset), recycled and a reference paper containing only cellulose. The tests were carried out in chambers with relative air humidity of 95% and 100%. Mold growth was greatest in the tests at 100% relative humidity. Results of stereoscopic microscopy observation showed that Cladosporium sp. grew in 74% of these samples, A. niger in 75%, T. harzianum in 72% and C. globosum in 60%. In the chambers with 95% air humidity Cladosporium sp. grew in only 9% of the samples, A. niger in 1%, T harzianum in 3% and C globosum did not grow in any sample. The most bioreceptive paper was couche and the least receptive was recycled paper. The composition of the recycled paper, however, varies depending on the types of waste materials used to make it. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline ZnO thin films prepared by the sol-gel dip-coating technique were characterized by grazing incidence X-ray diffraction (GIXD), atomic force microscopy (AFM), X-ray reflectivity (XR) and grazing incidence small-angle X-ray scattering (GISAXS). The structures of several thin films subjected to (i) isochronous annealing at 350, 450 and 550 degrees C, and (ii) isothermal annealing at 450 degrees C during different time periods, were characterized. The studied thin films are composed of ZnO nanocrystals as revealed by analysing several GIXD patterns, from which their average sizes were determined. Thin film thickness and roughness were determined from quantitative analyses of AFM images and XR patterns. The analysis of XR patterns also yielded the average density of the studied films. Our GISAXS study indicates that the studied ZnO thin films contain nanopores with an ellipsoidal shape, and flattened along the direction normal to the substrate surface. The thin film annealed at the highest temperature, T = 550 degrees C, exhibits higher density and lower thickness and nanoporosity volume fraction, than those annealed at 350 and 450 degrees C. These results indicate that thermal annealing at the highest temperature (550 degrees C) induces a noticeable compaction effect on the structure of the studied thin films. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms of nucleation and growth and the solid-to-liquid transition of metallic nanoclusters embedded in sodium borate glass were recently studied in situ via small-angle X-ray scattering (SAXS) and wide-an-le X-ray scattering (WAXS). SAXS results indicate that, under isothermal annealing conditions, the formation and growth of Bi or Ag nanoclusters embedded in sodium borate glass occurs through two successive stages after a short incubation period. The first stage is characterized by the nucleation and growth of spherical metal clusters promoted by the diffusion of Bi or Ag atoms through the initially supersaturated glass phase. The second stage is named the coarsening stage and occurs when the (Bi- or Ag-) doping level of the vitreous matrix is close to the equilibrium value. The experimental results demonstrated that, at advanced stages of the growth process, the time dependence of the average radius and density number of the clusters is in agreement with the classical Lifshitz-Slyozov-Waoner (LSW) theory. However, the radius distribution function is better described by a lognormal function than by the function derived from the theoretical LSW model. From the results of SAXS measurements at different temperatures, the activation energies for the diffusion of Ag and Bi through sodium borate glass were determined. In addition, via combination of the results of simultaneous WAXS and SAXS measurements at different temperatures, the crystallographic structure and the dependence of melting temperature T(m) on crystal radius R of Bi nanocrystals were established. The experimental results indicate that T(m) is a linear and decreasing function of nanocrystal reciprocal radius 1/R, in agreement with the Couchman and Jesser theoretical model. Finally, a weak contraction in the lattice parameters of Bi nanocrystals with respect to bulk crystals was established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure and local ordering of 1,6-hexamethylenediisocyanate-(acetoxypropy1) cellulose (HDI-APC) liquid crystalline elastomer thin films are investigated by using X-ray diffraction and scattering techniques. Optical microscopy and mechanical essays are performed to complement the investigation. The study is performed in films subjected or not to an uniaxial stress. Our results indicate that the film is constituted by a bundle of helicoidal fiber-like structure, where the cellobiose block spins around the axis of the fiber, like a string-structure in a smectic-like packing, with the pitch defined by a smectic-like layer. The fibers are in average perpendicular to the smectic-like planes. Without the stretch, these bundles are warped, only with a residual orientation along the casting direction. The stretch orients the bundles along it, increasing the smectic-like and the nematic-like ordering of the fibers. Under stress, the network of molecules which connects the cellobiose blocs and forms the cellulosic matrix tends to organize their links in a hexagonal-like structure with lattice parameter commensurate to the smectic-like structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 angstrom(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.