914 resultados para Cartilage-on-bone laminate
Resumo:
Preclinical in vivo experimental studies are performed for evaluating proof-of-principle concepts, safety and possible unwanted reactions of candidate bone biomaterials before proceeding to clinical testing. Specifically, models involving small animals have been developed for screening bone biomaterials for their potential to enhance bone formation. No single model can completely recreate the anatomic, physiologic, biomechanic and functional environment of the human mouth and jaws. Relevant aspects regarding physiology, anatomy, dimensions and handling are discussed in this paper to elucidate the advantages and disadvantages of small-animal models. Model selection should be based not on the 'expertise' or capacities of the team, but rather on a scientifically solid rationale, and the animal model selected should reflect the question for which an answer is sought. The rationale for using heterotopic or orthotopic testing sites, and intraosseous, periosseous or extraskeletal defect models, is discussed. The paper also discusses the relevance of critical size defect modeling, with focus on calvarial defects in rodents. In addition, the rabbit sinus model and the capsule model in the rat mandible are presented and discussed in detail. All animal experiments should be designed with care and include sample-size and study-power calculations, thus allowing generation of meaningful data. Moreover, animal experiments are subject to ethical approval by the relevant authority. All procedures and the postoperative handling and care, including postoperative analgesics, should follow best practice.
Resumo:
Trabecular bone is a porous mineralized tissue playing a major load bearing role in the human body. Prediction of age-related and disease-related fractures and the behavior of bone implant systems needs a thorough understanding of its structure-mechanical property relationships, which can be obtained using microcomputed tomography-based finite element modeling. In this study, a nonlinear model for trabecular bone as a cohesive-frictional material was implemented in a large-scale computational framework and validated by comparison of μFE simulations with experimental tests in uniaxial tension and compression. A good correspondence of stiffness and yield points between simulations and experiments was found for a wide range of bone volume fraction and degree of anisotropy in both tension and compression using a non-calibrated, average set of material parameters. These results demonstrate the ability of the model to capture the effects leading to failure of bone for three anatomical sites and several donors, which may be used to determine the apparent behavior of trabecular bone and its evolution with age, disease, and treatment in the future.
Resumo:
Image-based modeling is a popular approach to perform patient-specific biomechanical simulations. Accurate modeling is critical for orthopedic application to evaluate implant design and surgical planning. It has been shown that bone strength can be estimated from the bone mineral density (BMD) and trabecular bone architecture. However, these findings cannot be directly and fully transferred to patient-specific modeling since only BMD can be derived from clinical CT. Therefore, the objective of this study was to propose a method to predict the trabecular bone structure using a µCT atlas and an image registration technique. The approach has been evaluated on femurs and patellae under physiological loading. The displacement and ultimate force for femurs loaded in stance position were predicted with an error of 2.5% and 3.7%, respectively, while predictions obtained with an isotropic material resulted in errors of 7.3% and 6.9%. Similar results were obtained for the patella, where the strain predicted using the registration approach resulted in an improved mean squared error compared to the isotropic model. We conclude that the registration of anisotropic information from of a single template bone enables more accurate patient-specific simulations from clinical image datasets than isotropic model.
Resumo:
BACKGROUND Bone morphogenetic protein 9 (BMP9) has previously been characterized as one of the most osteogenic growth factors of the BMP-family, however, up until now, these experiments have only been demonstrated using adenovirus-transfection experiments (gene therapy). With the recent development of recombinant human (rh)BMP9, the aim of the present study was to investigate its osteopromotive potential versus rhBMP2 when loaded onto a collagen membrane. METHODS ST2 stromal bone marrow cells were seeded onto 1)control; 2)rhBMP2-low(10ng/ml); 3)rhBMP2-high(100ng/ml); 4)rhBMP9-low(10ng/ml); and 5)rhBMP9-high(100ng/ml) porcine collagen membranes. Groups were then compared for cell adhesion at 8 hours, cell proliferation at 1, 3 and 5 days real-time PCR at 3 and 14 days for genes encoding Runx2, alkaline phosphatase(ALP) and bone sialoprotein(BSP) at 3 and 14 days and alizarin red staining at 14 days. RESULTS While rhBMP2 and rhBMP9 demonstrated little effects on cell attachment and proliferation, pronounced increases were observed on osteoblast differentiation. It was found that all groups significantly induced ALP mRNA levels at 3 days and BSP levels at 14 days, however rhBMP9-high demonstrated significantly higher values when compared to all other groups for ALP levels (5-fold increase at 3 days and 2-fold increase at 14 days). Alizarin red staining further revealed that both concentrations of rhBMP9 induced up to 3-fold more staining when compared to rhBMP2. CONCLUSION These results indicate that the combination of collagen membranes with rhBMP9 significantly induced significantly higher ALP mRNA expression and alizarin red staining when compared to rhBMP2. These findings suggest that rhBMP9 may be a suitable growth factor for future regenerative procedures in bone biology.
Resumo:
GOAL We present the development of a boneanchored port for the painless long-term hemodialytic treatment of patients with renal failure. This port is implanted behind the ear. METHODS The port was developed based on knowledge obtained from long-term experience with implantable hearing devices, which are firmly anchored to the bone behind the ear. This concept of bone anchoring was adapted to the requirements for a vascular access during hemodialysis. The investigational device is comprised of a base plate that is firmly fixed with bone screws to the bone behind the ear (temporal bone). A catheter leads from the base plate valve block through the internal jugular vein and into the right atrium. The valves are opened using a special disposable adapter, without any need to puncture the blood vessels. Between hemodialysis sessions the port is protected with a disposable cover. RESULTS Flow rate, leak tightness and purification were tested on mockups. Preoperative planning and the surgical procedure were verified in 15 anatomical human whole head specimens. CONCLUSION Preclinical evaluations demonstrated the technical feasibility and safety of the investigational device. SIGNIFICANCE Approximately 1.5 million people are treated with hemodialysis worldwide, and 25% of the overall cost of dialysis therapy results from vascular access problems. New approaches towards enhancing vascular access could potentially reduce the costs and complications of hemodialytic therapy.
Resumo:
The articular cartilage layer of synovial joints is commonly lesioned by trauma or by a degenerative joint disease. Attempts to repair the damage frequently involve the performance of autologous chondrocyte implantation (ACI). Healthy cartilage must be first removed from the joint, and then, on a separate occasion, following the isolation of the chondrocytes and their expansion in vitro, implanted within the lesion. The disadvantages of this therapeutic approach include the destruction of healthy cartilage-which may predispose the joint to osteoarthritic degeneration-the necessarily restricted availability of healthy tissue, the limited proliferative capacity of the donor cells-which declines with age-and the need for two surgical interventions. We postulated that it should be possible to induce synovial stem cells, which are characterized by high, age-independent, proliferative and chondrogenic differentiation capacities, to lay down cartilage within the outer juxtasynovial space after the transcutaneous implantation of a carrier bearing BMP-2 in a slow-release system. The chondrocytes could be isolated on-site and immediately used for ACI. To test this hypothesis, Chinchilla rabbits were used as an experimental model. A collagenous patch bearing BMP-2 in a slow-delivery vehicle was sutured to the inner face of the synovial membrane. The neoformed tissue was excised 5, 8, 11 and 14 days postimplantation for histological and histomorphometric analyses. Neoformed tissue was observed within the outer juxtasynovial space already on the 5th postimplantation day. It contained connective and adipose tissues, and a central nugget of growing cartilage. Between days 5 and 14, the absolute volume of cartilage increased, attaining a value of 12 mm(3) at the latter juncture. Bone was deposited in measurable quantities from the 11th day onwards, but owing to resorption, the net volume did not exceed 1.5 mm(3) (14th day). The findings confirm our hypothesis. The quantity of neoformed cartilage that is deposited after only 1 week within the outer juxtasynovial space would yield sufficient cells for ACI. Since the BMP-2-bearing patches would be implanted transcutaneously in humans, only one surgical or arthroscopic intervention would be called for. Moreover, most importantly, sufficient numbers of cells could be generated in patients of all ages.
Resumo:
Recently, ocular vestibular evoked myogenic potentials (oVEMP) have emerged as a tool for assessment of utricular function. They are short-latency myogenic potentials which can be elicited in response to vestibular stimulation, e.g. by air-conducted sound (ACS) or bone-conducted vibration (BCV) (reviewed in (Kantner and Gurkov, 2012)). Otolithic afferent neurons trigger reflexive electromyographic activity of the extraocular muscles which can be recorded beneath the eye contralateral to the stimulated ear by use of surface electrodes.
Resumo:
BACKGROUND Recombinant bone morphogenetic protein two (rhBMP2) has been utilised for a variety of clinical applications in orthopaedic surgery and dental procedures. Despite its widespread use, concerns have been raised regarding its short half-life and transient bioactivity in vivo. Recent investigation aimed at developing rhBMP2 synthesized from a shorter polypeptide chain (108 amino acids) has been undertaken. METHODS The osteopromotive properties of BMP2 were investigated on cell behaviour. Five concentrations of rhBMP2_108 including 10, 50, 100, 200 and 500 ng/ml were compared to a commercially available rhBMP2 (100 ng/ml). Each of the working concentrations of rhBMP2_108 were investigated on MC3T3-E1 osteoblasts for their ability to induce osteoblast recruitment, proliferation and differentiation as assessed by alkaline phosphatase (ALP) staining, alizarin red staining, and real-time PCR for genes encoding ALP, osteocalcin (OCN), collagen-1 (COL-1) and Runx2. RESULTS The results demonstrate that all concentrations of rhBMP2_108 significantly improved cell recruitment and proliferation of osteoblasts at 5 days post seeding. Furthermore, rhBMP2_108 had the most pronounced effects on osteoblast differentiation. It was found that rhBMP2_108 had over a four fold significant increase in ALP activity at seven and 14 days post-seeding and the concentrations ranging from 50 to 200 ng/ml demonstrated the most pronounced effects. Analysis of real-time PCR for genes encoding ALP, OCN, COL-1 and Runx2 further confirmed dose-dependant increases at 14 days post-seeding. Furthermore, alizarin red staining demonstrated a concentration dependant increase in staining at 14 days. CONCLUSION The results from the present study demonstrate that this shorter polypeptide chain of rhBMP2_108 is equally as bioactive as commercially available rhBMP2 for the recruitment of progenitor cells by facilitating their differentiation towards the osteoblast lineage. Future in vivo study are necessary to investigate its bioactivity.
Resumo:
Cartilage oligomeric matrix protein (COMP) is a large, homopentameric, extracellular matrix glycoprotein. Mutations in COMP cause two skeletal dysplasias: pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (EMD1). These dwarfing conditions are caused by retention of misfolded mutant COMP with type IX collagen and matrilin-3 (MATN3) in the rough endoplasmic reticulum (rER) of the chondrocyte. These proteins form a matrix in the rER that continues to expand until it fills the entire cell, eventually causing cell death. Interestingly, loss of COMP in COMP null mice does not affect normal bone development or growth, suggesting that elimination of COMP (wildtype and mutant) expression may prevent PSACH. The hypothesis of these studies was that a hammerhead ribozyme could eliminate or knockdown COMP mRNA expression in PSACH chondrocytes . To test this hypothesis, a human chondrocyte model system that recapitulates the PSACH chondrocyte phenotype was developed by over-expressing mutant (mt-) COMP in normal chondrocytes using a recombinant adenovirus. Chondrocytes over-expressing mt-COMP developed giant rER cisternae containing COMP, type IX collagen and MATN3. Deconvolution microscopy and computer modeling showed that these proteins formed an ordered matrix surrounding a type II pro-collagen core. Additionally, the results show that a hammerhead ribozyme, ribozyme 56 (Ribo56) reduced over-expressed mt-COMP in COS cells and endogenous COMP in normal chondrocytes and mt-COMP in three PSACH chondrocytes cell line (with different mutations) by 40-70%. Altogether, these studies show that the PSACH cellular phenotype can be created in vitro and that the mt-COMP protein burden can be reduced by the presence of a COMP-specific ribozyme. Future studies will focus on designing ribozymes or short interfering RNA (siRNA) technologies that will result in better knockdown of COMP expression as well as the temporal constraints imposed by the PSACH phenotype. ^
Resumo:
To determine which features of retroviral vector design most critically affect gene expression in hematopoietic cells in vivo, we have constructed a variety of different retroviral vectors which encode the same gene product, human adenosine deaminase (EC 3.5.4.4), and possess the same vector backbone yet differ specifically in transcriptional control sequences suggested by others to be important for gene expression in vivo. Murine bone marrow cells were transduced by each of the recombinant viruses and subsequently used to reconstitute the hematopoietic system of lethally irradiated recipients. Five to seven months after transplantation, analysis of the peripheral blood of animals transplanted with cells transduced by vectors which employ viral long terminal repeats (LTRs) for gene expression indicated that in 83% (77/93) of these animals, the level of human enzyme was equal to or greater than the level of endogenous murine enzyme. Even in bone marrow transplant recipients reconstituted for over 1 year, significant levels of gene expression were observed for each of the vectors in their bone marrow, spleen, macrophages, and B and T lymphocytes. However, derivatives of the parental MFG-ADA vector which possess either a single base mutation (termed B2 mutation) or myeloproliferative sarcoma virus LTRs rather than the Moloney murine leukemia virus LTRs led to significantly improved gene expression in all lineages. These studies indicate that retroviral vectors which employ viral LTRs for the expression of inserted sequences make it possible to obtain high levels of a desired gene product in most hematopoietic cell lineages for close to the lifetime of bone marrow transplant recipients.
Resumo:
von Willebrand factor (vWF) is essential for the induction of occlusive thrombosis in stenosed and injured pig arteries and for normal hemostasis. To separate the relative contribution of plasma and platelet vWF to arterial thrombosis, we produced chimeric normal and von Willebrand disease pigs by crossed bone marrow transplantation; von Willebrand disease (vWD) pigs were engrafted with normal pig bone marrow and normal pigs were engrafted with vWD bone marrow. Thrombosis developed in the chimeric normal pigs that showed normal levels of plasma vWF and an absence of platelet vWF; but no thrombosis occurred in the chimeric vWD pigs that demonstrated normal platelet vWF and an absence of plasma vWF. The ear bleeding times of the chimeric pigs were partially corrected by endogenous plasma vWF but not by platelet vWF. Our animal model demonstrated that vWF in the plasma compartment is essential for the development of arterial thrombosis and that it also contributes to the maintenance of bleeding time and hemostasis.