944 resultados para Cancer detection
Resumo:
Modelling events in densely crowded environments remains challenging, due to the diversity of events and the noise in the scene. We propose a novel approach for anomalous event detection in crowded scenes using dynamic textures described by the Local Binary Patterns from Three Orthogonal Planes (LBP-TOP) descriptor. The scene is divided into spatio-temporal patches where LBP-TOP based dynamic textures are extracted. We apply hierarchical Bayesian models to detect the patches containing unusual events. Our method is an unsupervised approach, and it does not rely on object tracking or background subtraction. We show that our approach outperforms existing state of the art algorithms for anomalous event detection in UCSD dataset.
Resumo:
Secondary lower-limb lymphedema can develop following treatment for gynecological cancers, and has debilitating effects on quality of life (QoL). Lymphedema can limit mobility and ability to perform daily activities, and have adverse effects on psychological and social wellbeing. When assessing the effect of lymphedema treatment methods, the focus is on change in clinically measured lymphedema status, rather than QoL outcomes. Considering that treatment for lymphedema involves a significant and ongoing commitment from patients, it is essential to determine whether the benefits to patients outweigh the burden associated with treatment. This article summarizes the results of studies assessing the impact of lower-limb lymphedema on QoL in women with gynecological cancer, evaluates their methodologies and discusses limitations and priorities for future research.
Resumo:
Objectives: The purpose of this study was to describe the use, as well as perceived effectiveness, of mainstream and complementary and alternative medicine (CAM) therapies in the treatment of lymphedema following breast or gynecological cancer. Further, the study assessed the relationship between the characteristics of lymphedema (including type, severity, stability, and duration), and the use of CAM and/or mainstream treatment. Methods: This was a cross-sectional study using a convenience sample of women with lymphedema following breast and gynecological cancers. A self-administered questionnaire was sent to 247 potentially eligible women. Of those returned (50%), 23 were ineligible and 6 were excluded due to level of missing data. Results: In the previous 12 months, the majority of women (90%) had used mainstream treatments to treat their lymphedema, with massage being the most commonly used (86%). One (1) in 2 women had used CAM to treat their lymphedema, and 98% of those using CAM were also using mainstream treatments. Over 27 types of CAM were reported, with use of a chi machine, vitamin E supplements, yoga, and meditation being the most commonly reported forms. The perceived effectiveness ratings (1–7 with 7 = completely effective) of mainstream(mean – standard deviation (SD): 5.3 – 1.5) and CAM therapies (mean – SD: 5.2 + 1.6) were considered high. Conclusions: These results demonstrate that mainstream and CAM treatment use is common, varied, and considered to be effective among women with lymphedema following breast or gynecological cancer. Furthermore, it highlights the immediate need for larger prospective studies assessing the inter-relationship between the use of mainstream and CAM therapies for treatment success.
Resumo:
Cancer-related fatigue (CRF) is a distressing symptom frequently experienced by patients with advanced cancer. While there have been some advances in the understanding of the management of fatigue associated with cancer treatment, CRF associated with advanced cancer remains a phenomenon that is not well-managed. The aetiologic factors associated with CRF, the impacts of CRF and the current management of CRF are discussed in this review article in relation to patients with advanced cancer. The paper concludes that while further research is required in the area, there are several potentially effective strategies currently available that can reduce the severity of CRF in patients with advanced cancer.
Resumo:
Aim: In this paper we discuss the use of the Precede-Proceed model when investigating health promotion options for breast cancer survivors. Background: Adherence to recommended health behaviors can optimize well-being after cancer treatment. Guided by the Precede-Proceed approach, we studied the behaviors of breast cancer survivors in our health service area. Data sources: The interview data from the cohort of breast cancer survivors are used in this paper to illustrate the use of Precede-Proceed in this nursing research context. Interview data were collected from June to December 2009. We also searched Medline, CINAHL, PsychInfo and PsychExtra up to 2010 for relevant literature in English to interrogate the data from other theoretical perspectives. Discussion: The Precede-Proceed model is theoretically-complex. The deductive analytic process guided by the model usefully explained some of the health behaviors of cancer survivors, although it could not explicate many other findings. A complementary inductive approach to the analysis and subsequent interpretation by way of Uncertainty in Illness Theory and other psychosocial perspectives provided a comprehensive account of the qualitative data that resulted in contextually-relevant recommendations for nursing practice. Implications for nursing: Nursing researchers using Precede-Proceed should maintain theoretical flexibility when interpreting qualitative data. Perspectives not embedded in the model might need to be considered to ensure that the data are analyzed in a contextually-relevant way. Conclusion: Precede-Proceed provides a robust framework for nursing researchers investigating health promotion in cancer survivors; however additional theoretical lenses to those embedded in the model can enhance data interpretation.
Resumo:
Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, few attempts have been made to explore the structure damage with frequency response functions (FRFs). This paper illustrates the damage identification and condition assessment of a beam structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). In practice, usage of all available FRF data as an input to artificial neural networks makes the training and convergence impossible. Therefore one of the data reduction techniques Principal Component Analysis (PCA) is introduced in the algorithm. In the proposed procedure, a large set of FRFs are divided into sub-sets in order to find the damage indices for different frequency points of different damage scenarios. The basic idea of this method is to establish features of damaged structure using FRFs from different measurement points of different sub-sets of intact structure. Then using these features, damage indices of different damage cases of the structure are identified after reconstructing of available FRF data using PCA. The obtained damage indices corresponding to different damage locations and severities are introduced as input variable to developed artificial neural networks. Finally, the effectiveness of the proposed method is illustrated and validated by using the finite element modal of a beam structure. The illustrated results show that the PCA based damage index is suitable and effective for structural damage detection and condition assessment of building structures.
Resumo:
Visual activity detection of lip movements can be used to overcome the poor performance of voice activity detection based solely in the audio domain, particularly in noisy acoustic conditions. However, most of the research conducted in visual voice activity detection (VVAD) has neglected addressing variabilities in the visual domain such as viewpoint variation. In this paper we investigate the effectiveness of the visual information from the speaker’s frontal and profile views (i.e left and right side views) for the task of VVAD. As far as we are aware, our work constitutes the first real attempt to study this problem. We describe our visual front end approach and the Gaussian mixture model (GMM) based VVAD framework, and report the experimental results using the freely available CUAVE database. The experimental results show that VVAD is indeed possible from profile views and we give a quantitative comparison of VVAD based on frontal and profile views The results presented are useful in the development of multi-modal Human Machine Interaction (HMI) using a single camera, where the speaker’s face may not always be frontal.
Resumo:
This paper presents a preliminary flight test based detection range versus false alarm performance characterisation of a morphological-hidden Markov model filtering approach to vision-based airborne dim-target collision detection. On the basis of compelling in-flight collision scenario data, we calculate system operating characteristic (SOC) curves that concisely illustrate the detection range versus false alarm rate performance design trade-offs. These preliminary SOC curves provide a more complete dim-target detection performance description than previous studies (due to the experimental difficulties involved, previous studies have been limited to very short flight data sample sets and hence have not been able to quantify false alarm behaviour). The preliminary investigation here is based on data collected from 4 controlled collision encounters and supporting non-target flight data. This study suggests head-on detection ranges of approximately 2.22 km under blue sky background conditions (1.26 km in cluttered background conditions), whilst experiencing false alarms at a rate less than 1.7 false alarms/hour (ie. less than once every 36 minutes). Further data collection is currently in progress.
Resumo:
It is recognised that individuals do not always respond honestly when completing psychological tests. One of the foremost issues for research in this area is the inability to detect individuals attempting to fake. While a number of strategies have been identified in faking, a commonality of these strategies is the latent role of long term memory. Seven studies were conducted in order to examine whether it is possible to detect the activation of faking related cognitions using a lexical decision task. Study 1 found that engagement with experiential processing styles predicted the ability to fake successfully, confirming the role of associative processing styles in faking. After identifying appropriate stimuli for the lexical decision task (Studies 2A and 2B), Studies 3 to 5 examined whether a cognitive state of faking could be primed and subsequently identified, using a lexical decision task. Throughout the course of these studies, the experimental methodology was increasingly refined in an attempt to successfully identify the relevant priming mechanisms. The results were consistent and robust throughout the three priming studies: faking good on a personality test primed positive faking related words in the lexical decision tasks. Faking bad, however, did not result in reliable priming of negative faking related cognitions. To more completely address potential issues with the stimuli and the possible role of affective priming, two additional studies were conducted. Studies 6A and 6B revealed that negative faking related words were more arousing than positive faking related words, and that positive faking related words were more abstract than negative faking related words and neutral words. Study 7 examined whether the priming effects evident in the lexical decision tasks occurred as a result of an unintentional mood induction while faking the psychological tests. Results were equivocal in this regard. This program of research aligned the fields of psychological assessment and cognition to inform the preliminary development and validation of a new tool to detect faking. Consequently, an implicit technique to identify attempts to fake good on a psychological test has been identified, using long established and robust cognitive theories in a novel and innovative way. This approach represents a new paradigm for the detection of individuals responding strategically to psychological testing. With continuing development and validation, this technique may have immense utility in the field of psychological assessment.
Resumo:
Influenza is a widespread disease occurring in seasonal epidemics, and each year is responsible for up to 500,000 deaths worldwide. Influenza can develop into strains which cause severe symptoms and high mortality rates, and could potentially reach pandemic status if the virus’ properties allow easy transmission. Influenza is transmissible via contact with the virus, either directly (infected people) or indirectly (contaminated objects); via reception of large droplets over short distances (one metre or less); or through inhalation of aerosols containing the virus expelled by infected individuals during respiratory activities, that can remain suspended in the air and travel distances of more than one metre (the aerosol route). Aerosol transmission of viruses involves three stages: production of the droplets containing viruses; transport of the droplets and ability of a virus to remain intact and infectious; and reception of the droplets (via inhalation). Our understanding of the transmission of influenza viruses via the aerosol route is poor, and thus our ability to prevent a widespread outbreak is limited. This study explored the fate of viruses in droplets by investigating the effects of some physical factors on the recovery of both a bacteriophage model and influenza virus. Experiments simulating respiratory droplets were carried out using different types of droplets, generated from a commonly used water-like matrix, and also from an ‘artificial mucous’ matrix which was used to more closely resemble respiratory fluids. To detect viruses in droplets, we used the traditional plaque assay techniques, and also a sensitive, quantitative PCR assay specifically developed for this study. Our results showed that the artificial mucous suspension enhanced the recovery of infectious bacteriophage. We were able to report detection limits of infectious bacteriophage (no bacteriophage was detected by the plaque assay when aerosolised from a suspension of 103 PFU/mL, for three of the four droplet types tested), and that bacteriophage could remain infectious in suspended droplets for up to 20 minutes. We also showed that the nested real-time PCR assay was able to detect the presence of bacteriophage RNA where the plaque assay could not detect any intact particles. Finally, when applying knowledge from the bacteriophage experiments, we reported the quantitative recoveries of influenza viruses in droplets, which were more consistent and stable than we had anticipated. Influenza viruses can be detected up to 20 minutes (after aerosolisation) in suspended aerosols and possibly beyond. It also was detectable from nebulising suspensions with relatively low concentrations of viruses.
Resumo:
Many existing schemes for malware detection are signature-based. Although they can effectively detect known malwares, they cannot detect variants of known malwares or new ones. Most network servers do not expect executable code in their in-bound network traffic, such as on-line shopping malls, Picasa, Youtube, Blogger, etc. Therefore, such network applications can be protected from malware infection by monitoring their ports to see if incoming packets contain any executable contents. This paper proposes a content-classification scheme that identifies executable content in incoming packets. The proposed scheme analyzes the packet payload in two steps. It first analyzes the packet payload to see if it contains multimedia-type data (such as . If not, then it classifies the payload either as text-type (such as or executable. Although in our experiments the proposed scheme shows a low rate of false negatives and positives (4.69% and 2.53%, respectively), the presence of inaccuracies still requires further inspection to efficiently detect the occurrence of malware. In this paper, we also propose simple statistical and combinatorial analysis to deal with false positives and negatives.
Resumo:
The aim is to review the published scientific literature for studies evaluating nonpharmacological interventions for breathlessness management in patients with lung cancer. The following selection criteria were used to systematically search the literature: studies were to be published research or systematic reviews; they were to be published in English and from 1990 to 2007; the targeted populations were adult patients with dyspnoea/breathlessness associated with lung cancer; and the study reported on the outcomes from use of non-pharmacological strategies for breathlessness. This review retrieved five studies that met all inclusion criteria. All the studies reported the benefits of non-pharmacological interventions in improving breathlessness regardless of differences in clinical contexts, components of programmes and methods for delivery. Analysis of the available evidence suggests that tailored instructions delivered by nurses with sufficient training and supervision may have some benefits over other delivery approaches. Based on the results, non-pharmacological interventions are recommended as effective adjunctive strategies in managing breathlessness for patients with lung cancer. In order to refine such interventions, future research should seek to explore the core components of such approaches that are critical to achieving optimal outcomes, the contexts in which the interventions are most effective, and to evaluate the relative benefits of different methods for delivering such interventions.
Resumo:
Whilst survival rates for childhood cancer have improved dramatically over the past three decades, it is still a devastating diagnosis for family members and an illness which severely disrupts the lifestyle of the family unit. Developing an understanding of the impact of the illness on the family is crucial to better support families’ deal with the demands of the illness. In this study 9 families in which a child was diagnosed with cancer were interviewed twice over a 12 month period, approximately 6 months apart. Using Interpretative Phenomenological Analysis (IPA), a semi-structured interview was used to explicate parent’s experience of childhood cancer. The results revealed 5 super ordinate themes; (1) a pivotal moment in time, (2) the experience of adaptation in relation to having a sick child, (3) the nature of support, (4) re-evaluation of values during a critical life experience and (5) the experience of optimism and altruism. Findings indicate that parents express both negative and positive experiences as they re-evaluate the meaning and purpose of life, seek to redefine themselves, often in terms of priorities, relationships, sense of community, and achieve degrees of optimism and altruism. Implications for addressing the needs of parents and for further research are discussed.
Resumo:
Computer vision is an attractive solution for uninhabited aerial vehicle (UAV) collision avoidance, due to the low weight, size and power requirements of hardware. A two-stage paradigm has emerged in the literature for detection and tracking of dim targets in images, comprising of spatial preprocessing, followed by temporal filtering. In this paper, we investigate a hidden Markov model (HMM) based temporal filtering approach. Specifically, we propose an adaptive HMM filter, in which the variance of model parameters is refined as the quality of the target estimate improves. Filters with high variance (fat filters) are used for target acquisition, and filters with low variance (thin filters) are used for target tracking. The adaptive filter is tested in simulation and with real data (video of a collision-course aircraft). Our test results demonstrate that our adaptive filtering approach has improved tracking performance, and provides an estimate of target heading not present in previous HMM filtering approaches.
Resumo:
Overweight and obesity are risk factors for post-menopausal breast cancer, and many women diagnosed with breast cancer, irrespective of menopausal status, gain weight after diagnosis. Weight management plays an important role in rehabilitation and recovery since obesity and/or weight gain may lead to poorer breast cancer prognosis, as well as prevalent co-morbid conditions (e.g. cardiovascular disease and diabetes), poorer surgical outcomes (e.g., increased operating and recovery times, higher infection rates, and poorer healing), lymphedema, fatigue, functional decline, and poorer health and overall quality of life. Health care professionals should encourage weight management at all phases of the cancer care continuum as a means to potentially avoid adverse sequelae and late effects, as well as to improve overall health and possibly survival. Comprehensive approaches that involve dietary and behavior modification, and increased aerobic and strength training exercise have shown promise in either preventing weight gain or promoting weight loss, reducing biomarkers associated with inflammation and co-morbidity, and improving lifestyle behaviors, functional status, and quality of life in this high-risk patient population.