950 resultados para CATIONIC AMPHIPHILE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

MRP is a recently isolated ATP-binding cassette family transporter. We previously reported transfection studies that established that MRP confers multidrug resistance [Kruh, G. D., Chan, A., Myers, K., Gaughan, K., Miki, T. & Aaronson, S. A. (1994) Cancer Res. 54, 1649-1652] and that expression of MRP is associated with enhanced cellular efflux of lipophilic cytotoxic agents [Breuninger, L. M., Paul, S., Gaughan, K., Miki, T., Chan, A., Aaronson, S. A. & Kruh, G. D. (1995) Cancer Res. 55, 5342-5347]. To examine the biochemical mechanism by which MRP confers multidrug resistance, drug uptake experiments were performed using inside-out membrane vesicles prepared from NIH 3T3 cells transfected with an MRP expression vector. ATP-dependent transport was observed for several lipophilic cytotoxic agents including daunorubicin, etoposide, and vincristine, as well as for the glutathione conjugate leukotriene C4 (LTC4). However, only marginally increased uptake was observed for vinblastine and Taxol. Drug uptake was osmotically sensitive and saturable with regard to substrate concentration, with Km values of 6.3 microM, 4.4 microM, 4.2 microM, 35 nM, and 38 microM, for daunorubicin, etoposide, vincristine, LTC4, and ATP, respectively. The broad substrate specificity of MRP was confirmed by the observation that daunorubicin transport was competitively inhibited by reduced and oxidized glutathione, the glutathione conjugates S-(p-azidophenacyl)-glutathione (APA-SG) and S-(2,4-dinitrophenyl)glutathione (DNP-SG), arsenate, and the LTD4 antagonist MK571. This study establishes that MRP pumps unaltered lipophilic cytotoxic drugs, and suggests that this activity is an important mechanism by which the transporter confers multidrug resistance. The present study also indicates that the substrate specificity of MRP is overlapping but distinct from that of P-glycoprotein, and includes both the neutral or mildly cationic natural product cytotoxic drugs and the anionic products of glutathione conjugation. The widespread expression of MRP in tissues, combined with its ability to transport both lipophilic xenobiotics and the products of phase II detoxification, indicates that the transporter represents a widespread and remarkably versatile cellular defense mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of antisense technology has focused in part on creating improved methods for delivering oligodeoxynucleotides (ODNs) to cells. In this report, we describe a cationic lipid that, when formulated with the fusogenic lipid dioleoylphosphatidyliethanolamine, greatly improves the cellular uptake properties of antisense ODNs, as well as plasmid DNA. This lipid formulation, termed GS 2888 cytofectin, (i) efficiently transfects ODNs and plasmids into many cell types in the presence or absence of 10% serum in the medium, (ii) uses a 4- to 10-fold lower concentration of the agent as compared to the commercially available Lipofectin liposome, and (iii) is > or = 20-fold more effective at eliciting antisense effects in the presence of serum when compared to Lipofectin. Here we show antisense effects using GS 2888 cytofectin together with C-5 propynyl pyrimidine phosphorothioate ODNs in which we achieve inhibition of gene expression using low nanomolar concentrations of ODN. This agent expands the utility of antisense ODNs for their use in understanding gene function and offers the potential for its use in DNA delivery applications in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immune challenge to the insect Podisus maculiventris induces synthesis of a 21-residue peptide with sequence homology to frog skin antimicrobial peptides of the brevinin family. The insect and frog peptides have in common a C-terminally located disulfide bridge delineating a cationic loop. The peptide is bactericidal and fungicidal, exhibiting the largest antimicrobial spectrum observed so far for an insect defense peptide. An all-D-enantiomer is nearly inactive against Gram-negative bacteria and some Gram-positive strains but is fully active against fungi and other Gram-positive bacteria, suggesting that more than one mechanism accounts for the antimicrobial activity of this peptide. Studies with truncated synthetic isoforms underline the role of the C-terminal loop and flanking residues for the activity of this molecule for which we propose the name thanatin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have elucidated how the absorption of a photon in a rod or cone cell leads to the generation of the amplified neural signal that is transmitted to higher-order visual neurons. Photoexcited visual pigment activates the GTP-binding protein transducin, which in turn stimulates cGMP phosphodiesterase. This enzyme hydrolyzes cGMP, allowing cGMP-gated cationic channels in the surface membrane to close, hyperpolarize the cell, and modulate transmitter release at the synaptic terminal. The kinetics of reactions in the cGMP cascade limit the temporal resolution of the visual system as a whole, while statistical fluctuations in the reactions limit the reliability of detection of dim light. Much interest now focuses on the processes that terminate the light response and dynamically regulate amplification in the cascade, causing the single photon response to be reproducible and allowing the cell to adapt in background light. A light-induced fall in the internal free Ca2+ concentration coordinates negative feedback control of amplification. The fall in Ca2+ stimulates resynthesis of cGMP, antagonizes rhodopsin's catalytic activity, and increases the affinity of the light-regulated cationic channel for cGMP. We are using physiological methods to study the molecular mechanisms that terminate the flash response and mediate adaptation. One approach is to observe transduction in truncated, dialyzed photoreceptor cells whose internal Ca2+ and nucleotide concentrations are under experimental control and to which exogenous proteins can be added. Another approach is to observe transduction in transgenic mouse rods in which specific proteins within the cascade are altered or deleted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ovine pulmonary surfactant is bactericidal for Pasteurella haemolytica when surfactant and bacteria mixtures are incubated with normal ovine serum. To isolate this component, surfactant (1 mg/ml) was centrifuged at 100,000 x gav, and the supernatant was fractionated by HPLC. Fractions were eluted with acetonitrile (10-100%)/0.1% trifluoracetic acid and tested for bactericidal activity. Amino acid and sequence analysis of three bactericidal fractions showed that fraction 2 contained H-GDDDDDD-OH, fraction 3 contained H-DDDDDDD-OH, and fraction 6 contained H-GADDDDD-OH. Peptides in 0.14 M NaCl/10 microM ZnCl2 (zinc saline solution) induced killing of P. haemolytica and other bacteria comparable to defensins and beta-defensins [minimal bactericidal concentration (MBC)50 range, 0.01-0.06 mM] but not in 0.14 M NaCl/10 mM sodium phosphate buffer, pH 7.2/0.5 mM CaCl2/0.15 mM MgCl2 (MBC50 range, 2.8-11.5 mM). Bactericidal activity resided in the core aspartate hexapeptide homopolymeric region, and MBC50 values of aspartate dipeptide-to-heptapeptide homopolymers were inversely proportional to the number of aspartate residues in the peptide. P. haemolytica incubated with H-DDDDDD-OH in zinc saline solution was killed within 30 min. Ultrastructurally, cells contained flocculated intracellular constituents. In contrast to cationic defensins and beta-defensins, surfactant-associated anionic peptides are smaller in size, opposite in charge, and are bactericidal in zinc saline solution. They are members of another class of peptide antibiotics containing aspartate, which when present in pulmonary secretions may help clear bacteria as a part of the innate pulmonary defense system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mCAT-2 gene encodes a Na(+)-independent cationic amino acid (AA) transporter that is inducibly expressed in a tissue-specific manner in various physiological conditions. When mCAT-2 protein is expressed in Xenopus oocytes, the elicited AA transport properties are similar to the biochemically defined transport system y+. The mCAT-2 protein sequence is closely related to another cationic AA transporter (mCAT-1); these related proteins elicit virtually identical cationic AA transport in Xenopus oocytes. The two genes differ in their tissue expression and induction patterns. Here we report the presence of diverse 5' untranslated region (UTR) sequences in mCAT-2 transcripts. Sequence analysis of 22 independent mCAT-2 cDNA clones reveals that the cDNA sequences converge precisely 16 bp 5' of the initiator AUG codon. Moreover, analysis of genomic clones shows that the mCAT-2 gene 5'UTR exons are dispersed over 18 kb. Classical promoter and enhancer elements are present in appropriate positions 5' of the exons and their utilization results in regulated mCAT-2 mRNA accumulation in skeletal muscle and liver following partial hepatectomy. The isoform adjacent to the most distal promoter is found in all tissues and cell types previously shown to express mCAT-2, while the other 5' UTR isoforms are more tissue specific in their expression. Utilization of some or all of five putative promoters was documented in lymphoma cell clones, liver, and skeletal muscle. TATA-containing and (G+C)-rich TATA-less promoters appear to control mCAT-2 gene expression. The data indicate that the several distinct 5' mCAT-2 mRNA isoforms result from transcriptional initiation at distinct promoters and permit flexible transcriptional regulation of this cationic AA transporter gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several polycations possessing substantial buffering capacity below physiological pH, such as lipopolyamines and polyamidoamine polymers, are efficient transfection agents per se--i.e., without the addition of cell targeting or membrane-disruption agents. This observation led us to test the cationic polymer polyethylenimine (PEI) for its gene-delivery potential. Indeed, every third atom of PEI is a protonable amino nitrogen atom, which makes the polymeric network an effective "proton sponge" at virtually any pH. Luciferase reporter gene transfer with this polycation into a variety of cell lines and primary cells gave results comparable to, or even better than, lipopolyamines. Cytotoxicity was low and seen only at concentrations well above those required for optimal transfection. Delivery of oligonucleotides into embryonic neurons was followed by using a fluorescent probe. Virtually all neurons showed nuclear labeling, with no toxic effects. The optimal PEI cation/anion balance for in vitro transfection is only slightly on the cationic side, which is advantageous for in vivo delivery. Indeed, intracerebral luciferase gene transfer into newborn mice gave results comparable (for a given amount of DNA) to the in vitro transfection of primary rat brain endothelial cells or chicken embryonic neurons. Together, these properties make PEI a promising vector for gene therapy and an outstanding core for the design of more sophisticated devices. Our hypothesis is that its efficiency relies on extensive lysosome buffering that protects DNA from nuclease degradation, and consequent lysosomal swelling and rupture that provide an escape mechanism for the PEI/DNA particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an approximately 3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with > 85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A model based on the nonlinear Poisson-Boltzmann equation is used to study the electrostatic contribution to the binding free energy of a simple intercalating ligand, 3,8-diamino-6-phenylphenanthridine, to DNA. We find that the nonlinear Poisson-Boltzmann model accurately describes both the absolute magnitude of the pKa shift of 3,8-diamino-6-phenylphenanthridine observed upon intercalation and its variation with bulk salt concentration. Since the pKa shift is directly related to the total electrostatic binding free energy of the charged and neutral forms of the ligand, the accuracy of the calculations implies that the electrostatic contributions to binding are accurately predicted as well. Based on our results, we have developed a general physical description of the electrostatic contribution to ligand-DNA binding in which the electrostatic binding free energy is described as a balance between the coulombic attraction of a ligand to DNA and the disruption of solvent upon binding. Long-range coulombic forces associated with highly charged nucleic acids provide a strong driving force for the interaction of cationic ligands with DNA. These favorable electrostatic interactions are, however, largely compensated for by unfavorable changes in the solvation of both the ligand and the DNA upon binding. The formation of a ligand-DNA complex removes both charged and polar groups at the binding interface from pure solvent while it displaces salt from around the nucleic acid. As a result, the total electrostatic binding free energy is quite small. Consequently, nonpolar interactions, such as tight packing and hydrophobic forces, must play a significant role in ligand-DNA stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the challenges that concerns chemistry is the design of molecules able to modulate protein-protein and protein-ligand interactions, since these are involved in many physiological and pathological processes. The interactions occurring between proteins and their natural counterparts can take place through reciprocal recognition of rather large surface areas, through recognition of single contact points and single residues, through inclusion of the substrates in specific, more or less deep binding sites. In many cases, the design of synthetic molecules able to interfere with the processes involving proteins can benefit from the possibility of exploiting the multivalent effect. Multivalency, widely spread in Nature, consists in the simultaneous formation between two entities (cell-cell, cell-protein, protein-protein) of multiple equivalent ligand-recognition site complexes. In this way the whole interaction results particularly strong and specific. Calixarenes furnish a very interesting scaffold for the preparation of multivalent ligands and in the last years calixarene-based ligands demonstrated their remarkable capability to recognize and inhibit or restore the activity of different proteins, with a high efficiency and selectivity in several recognition phenomena. The relevance and versatility of these ligands is due to the different exposition geometries of the binding units that can be explored exploiting the conformational properties of these macrocycles, the wide variety of functionalities that can be linked to their structure at different distances from the aromatic units and to their intrinsic multivalent nature. With the aim of creating new multivalent systems for protein targeting, the work reported in this thesis regards the synthesis and properties of glycocalix[n]arenes and guanidino calix[4]arenes for different purposes. Firstly, a new bolaamphiphile glycocalix[4]arene in 1,3-alternate geometry, bearing cellobiose, was synthesized for the preparation of targeted drug delivery systems based on liposomes. The formed stable mixed liposomes obtained by mixing the macrocycle with DOPC were shown to be able of exploiting the sugar units emerging from the lipid bilayer to agglutinate Concanavalin A, a lectin specific for glucose. Moreover, always thanks to the presence of the glycocalixarene in the layer, the same liposomes demonstrated through preliminary experiments to be uptaken by cancer cells overexpressing glucose receptors on their exterior surface more efficiently respect to simple DOPC liposomes lacking glucose units in their structure. Then a small library of glycocalix[n]arenes having different valency and geometry was prepared, for the creation of potentially active immunostimulants against Streptococcus pneumoniae, particularly the 19F serotype, one of the most virulent. These synthesized glycocalixarenes bearing β-N-acetylmannosamine as antigenic unit were compared with the natural polysaccharide on the binding to the specific anti-19F human polyclonal antibody, to verify their inhibition potency. Among all, the glycocalixarene based on the conformationally mobile calix[4]arene resulted the more efficient ligand, probably due its major possibility to explore the antibody surface and dispose the antigenic units in a proper arrangement for the interaction process. These results pointed out the importance of how the different multivalent presentation in space of the glycosyl units can influence the recognition phenomena. At last, NMR studies, using particularly 1H-15N HSQC experiments, were performed on selected glycocalix[6]arenes and guanidino calix[4]arenes blocked in the cone geometry, in order to better understand protein-ligand interactions. The glycosylated compounds were studied with Ralstonia solanacearum lectin, in order to better understand the nature of the carbohydrate‐lectin interactions in solution. The series of cationic calixarene was employed with three different acidic proteins: GB1, Fld and alpha synuclein. Particularly GB1 and Fld were observed to interact with all five cationic calix[4]arenes but showing different behaviours and affinities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During my PhD course, I focused my research on antimicrobial peptides (AMPs), in particular on the aspects of their computational design and development. This work led to the development of a new family of AMPs that I designed, starting from the amino acid sequence of a snake venom toxin, the cardiotoxin 1 (CTX-1) of Naja atra. Naja atra atra cardiotoxin 1, produced by Chinese cobra snakes belonging to Elapidae family, is included in the three-finger toxin family and exerts high cytotoxicity and antimicrobial activity too. This toxin family is characterized by specific folding of three beta-sheet loops (“fingers”) extending from the central core and by four conserved disulfide bridges. Using as template the first loop of this toxin, different sequences of 20 amino acids linear cationic peptides have been designed in order to avoid toxic effects but to maintain and strengthen the antimicrobial activity. As a result, the sequence NCP-0 (Naja Cardiotoxin Peptide-0) was designed as ancestor and subsequently other 4 variant sequences of NCP0 were developed. These variant sequences have shown microbicidal activity towards a panel of reference strains of Gram-positive and Gram-negative bacteria, fungi and an enveloped virus. In particular, the sequence designed as NCP-3 (Naja Cardiotoxin Peptide-3) and its variants NCP-3a and NCP-3b have shown the best antimicrobial activity together with low cytotoxicity against eukaryotic cells and low hemolytic activity. Bactericidal activity has been demonstrated by minimum bactericidal concentration (MBC) assay at values below 10 μg/ml for Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii ( clinical isolates), Moraxella catharralis ATCC 25238, MRSA ATCC 43400, while towards Staphylococcus aureus ATCC 25923, Enterococcus hirae ATCC 10541 and Streptococcus agalactiae ATCC 13813 the bactericidal activity was demonstrated even below 1.6 μg/ml concentration. This potent antimicrobial activity was confirmed even for unicellular fungi Candida albicans, Candida glabrata and Malassezia pachydermatis (MBC 32.26-6.4 μg/ml), and also against the fast-growing mycobacteria Mycobacterium smegmatis DSMZ 43756 and Mycobacterium fortuitum DSMZ 46621 (MBC 100 μg/ml). Moreover, NCP-3 has shown a virucidal activity on the enveloped virus Bovine Herpesvirus 1 (BoHV1) belonging to herpesviridae family. The bactericidal activity is maintained in a high salt concentration (125 and 250 mM NaCl) medium and PB +20% Mueller Hinton Medium for E. coli, MRSA and Pseudomonas aeruginosa reference strains. Considering these in vitro obtained data, we propose NCP-3 and its variants NCP-3a and NCP-3b as promising antimicrobial candidates. For this reason, the whole novel AMPs family has been protected by a national patent (n°102015000015951).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apesar de ser considerado um combustível sustentável, o etanol, produzido a partir da cana de açúcar, deixa um passivo de grandes proporções durante seu processo produtivo, a vinhaça, que vem sendo depositada nas próprias lavouras de cana de açúcar. É gerada na proporção de 12 litros para cada litro de etanol produzido em média, sendo rica em diversos nutrientes, os quais podem ser aproveitados para diversos fins como, por exemplo, meio de cultivo para microalgas. A presente pesquisa avaliou em uma primeira etapa a clarificação da vinhaça por um processo de coagulação com auxílio de um polímero catiônico, seguida de uma etapa de microfiltração tangencial em filtro de fibras ocas, o que permitiu uma redução superior a 77% para a cor aparente, de 99% para a turbidez e de 20% para a DQO, facilitando a utilização deste efluente para o cultivo de microalgas. Numa segunda etapa, foi avaliado o cultivo da microalga Chlorella vulgaris, em escala de bancada e operação em batelada, em meio preparado a partir da diluição da vinhaça em água de poço profundo, obtendo um aumento na biomassa produzida, determinado em termos de clorofila-a, em concentrações de vinhaça inferiores a 7,5% utilizando inóculo da ordem de 106 indivíduos. Tais dados permitiram a realização de ensaios de cultivo em escala contínua, com fotobiorreatores em escala piloto, gerando assim a biomassa utilizada nas próximas fases do estudo, que avaliaram a separação da biomassa gerada pelo processo de flotação por ar dissolvido. Os ensaios inicialmente realizados em escala de bancada e operados em batelada permitiram identificar as condições ótimas de operação, as quais foram então avaliadas em um flotador operando em fluxo contínuo. Tal flotador permitiu a obtenção de um lodo com teor de sólidos superior a 2%, o qual foi submetido à um processo final de desaguamento por centrifugação. Os ensaios de desaguamento, permitiram verificar que a utilização do mesmo polímero utilizado na etapa de clarificação permite a obtenção de um lodo mais estável, quando comparado com a não utilização de produto químico, na dosagem de polímero catiônico de 6 g.kg-1. A conclusão deste trabalho permitiu verificar a possibilidade de utilização da vinhaça como meio de cultivo de microalgas, reduzindo assim um dos impactos causados pela produção de etanol. Além disso foi possível verificar o potencial da FAD, para o espessamento de biomassa produzido em fotobiorreatores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O emprego da flotação por ar dissolvido (FAD) para o pós-tratamento de efluentes de reatores anaeróbios aparenta ser atraente considerando algumas características desse processo físico-químico. A FAD é reconhecidamente um processo de alta taxa, particularmente eficiente na remoção de material particulado em suspensão e de flocos produzidos pela coagulação química de águas residuárias. Além disso, há produção de lodo espesso e provavelmente arraste de parcela de gases e de compostos voláteis, presentes nos efluentes anaeróbios. Entretanto, a concepção de sistemas de FAD deve ser precedida por ensaios em unidades de flotação em escala de laboratório, permitindo a determinação dos principais parâmetros do processo. Neste trabalho, são apresentados e discutidos os resultados obtidos em laboratório e em instalação piloto de flotação com escoamento contínuo recebendo efluente de reator anaeróbio de manta de lodo (UASB), com 18 m3 de volume, tratando esgoto sanitário. Os ensaios em unidade em escala de laboratório foram realizados utilizando diferentes dosagens de cloreto férrico (entre 30 e 110 mg/L) ou de polímero catiônico (entre 1,0 e 16,0 mg/L), atuando como coagulantes. Além disso, foram estudadas as condições de floculação (tempo de 15 e de 25 min, e gradiente médio de velocidade de floculação entre 30 e 100 s-1) e diferentes valores de quantidade de ar fornecido ao processo (S*, entre 4,7 e 28,5 g de ar por m3 de efluente). Com a instalação piloto de FAD foram realizados apenas ensaios preliminares variando-se a taxa de aplicação superficial (140 e 210 m3/m2/d) para diferentes valores de S* (14,8 a 29,5 g de ar por m3 de efluente). Com o emprego de dosagem de 65 mg/L de cloreto férrico, de tempo de 15 min e gradiente médio de velocidade de floculação de 80 s-1 e de 19 g de ar por m3 de efluente, foram observados excelentes resultados em laboratório, com elevadas remoções de DQO (89%), de fosfato total (96%), de sólidos suspensos totais (96%), de turbidez (98%), de cor aparente (91%), de sulfetos (não detectado) e NTK (47%). Considerando o sistema UASB e FAD, nos testes em laboratório, foram observadas remoções globais de 97,7% de DQO, de 98,0% de fosfato total, de 98,9% de SST, de 99,5% de turbidez, de 97,8% de cor aparente e de 59,0% de NTK. Nos ensaios com a instalação piloto de FAD, o sistema apresentou remoções de 93,6% de DQO, de 87,1% de SST, de 90% de sulfetos e de 30% de NTK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A beta-alumina de sódio é uma cerâmica condutora de íons Na+ utilizada como eletrólito sólido em baterias de sódio para armazenamento de energias intermitentes como energia solar e eólica. Devido ao alto teor de sódio, esse material é instável a altas temperaturas, podendo sofrer variações de composição durante a etapa de sinterização convencional que utiliza altas temperaturas por longos períodos de tempo. A sinterização flash é uma técnica de sinterização ativada por corrente elétrica que proporciona a densificação de compactos cerâmicos em poucos segundos, a temperaturas notavelmente mais baixas que as convencionais. Uma vez obrigatória a passagem de corrente elétrica através da amostra, a sinterização flash de qualquer material condutor parece bastante razoável. Não obstante, até o presente momento a maioria dos trabalhos publicados sobre o assunto aborda apenas condutores de vacância de oxigênio ou semicondutores, materiais compatíveis com eletrodos de platina (Pt). Nesse trabalho a sinterização flash de um condutor catiônico foi estudada utilizando-se a beta-alumina como material modelo. A beta-alumina foi sintetizada pelo método dos precursores poliméricos, caracterizada e então submetida à sinterização flash. O material de eletrodo padrão (platina) provou ser um eletrodo bloqueador em contato com a beta-alumina. O sucesso da sinterização flash foi determinado pela troca do material de eletrodo por prata (Ag), o que possibilitou uma reação eletroquímica reversível nas interfaces eletrodo-cerâmica e possibilitou a obtenção de um material densificado com morfologia e composição química homogêneas. Devido à metaestabilidade da beta-alumina, a atmosfera dos experimentos precisou ser alterada para manter a integridade desse material rico em um metal alcalino (Na+). A sinterização flash de um condutor catiônico é apresentada pela primeira vez na literatura e ressalta a importância da reação de eletrodo, que é um fator limitante para o sucesso da sinterização flash e precisa ser estudada e adaptada para cada tipo de material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research study deals with the quantification and characterization of the EPS obtained from two 25 L bench scale membrane bioreactors (MBRs) with micro-(MF-MBR) and ultrafiltration (UF-MBR) submerged membranes. Both reactors were fed with synthetic water and operated for 168 days without sludge extraction, increasing their mixed liquor suspended solid (MLSS) concentration during the experimentation time. The characterization of soluble EPS (EPSs) was achieved by the centrifugation of mixed liquor and bound EPS (EPSb) by extraction using a cationic resin exchange (CER). EPS characterization was carried out by applying the 3-dimensional excitation–emission matrix fluorescence spectroscopy (3D-EEM) and high-performance size exclusion chromatography (HPSEC) with the aim of obtaining structural and functional information thereof. With regard to the 3D-EEM analysis, fluorescence spectra of EPSb and EPSs showed 2 peaks in both MBRs at all the MLSS concentrations studied. The peaks obtained for EPSb were associated to soluble microbial by-product-like (predominantly protein-derived compounds) and to aromatic protein. For EPSs, the peaks were associated with humic and fulvic acids. In both MBRs, the fluorescence intensity (FI) of the peaks increased as MLSS and protein concentrations increased. The FI of the EPSs peaks was much lower than for EPSb. It was verified that the evolution of the FI clearly depends on the concentration of protein and humic acids for EPSb and EPSs, respectively. Chromatographic analysis showed that the intensity of the EPSb peak increased while the concentrations of MLSS did. Additionally, the mean MW calculated was always higher the higher the MLSS concentrations in the reactors. MW was higher for the MF-MBR than for the UF-MBR for the same MLSS concentrations demonstrating that the filtration carried out with a UF membrane lead to retentions of lower MW particles.