933 resultados para Burn injuries
Resumo:
Increased permeability of blood vessels is an indicator for various injuries and diseases, including multiple sclerosis (MS), of the central nervous system. Nanoparticles have the potential to deliver drugs locally to sites of tissue damage, reducing the drug administered and limiting associated side effects, but efficient accumulation still remains a challenge. We developed peptide-functionalized polymeric nanoparticles to target blood clots and the extracellular matrix molecule nidogen, which are associated with areas of tissue damage. Using the induction of experimental autoimmune encephalomyelitis in rats to provide a model of MS associated with tissue damage and blood vessel lesions, all targeted nanoparticles were delivered systemically. In vivo data demonstrates enhanced accumulation of peptide functionalized nanoparticles at the injury site compared to scrambled and naive controls, particularly for nanoparticles functionalized to target fibrin clots. This suggests that further investigations with drug laden, peptide functionalized nanoparticles might be of particular interest in the development of treatment strategies for MS.
Resumo:
Background Foot dorsiflexion plays an essential role in both controlling balance and human gait. Electromyography (EMG) and sonomyography (SMG) can provide information on several aspects of muscle function. The aim was to establish the relationship between the EMG and SMG variables during isotonic contractions of foot dorsiflexors. Methods Twenty-seven healthy young adults performed the foot dorsiflexion test on a device designed ad hoc. EMG variables were maximum peak and area under the curve. Muscular architecture variables were muscle thickness and pennation angle. Descriptive statistical analysis, inferential analysis and a multivariate linear regression model were carried out. The confidence level was established with a statistically significant p-value of less than 0.05. Results The correlation between EMG variables and SMG variables was r = 0.462 (p < 0.05). The linear regression model to the dependent variable “peak normalized tibialis anterior (TA)” from the independent variables “pennation angle and thickness”, was significant (p = 0.002) with an explained variance of R2 = 0.693 and SEE = 0.16. Conclusions There is a significant relationship and degree of contribution between EMG and SMG variables during isotonic contractions of the TA muscle. Our results suggest that EMG and SMG can be feasible tools for monitoring and assessment of foot dorsiflexors. TA muscle parameterization and assessment is relevant in order to know that increased strength accelerates the recovery of lower limb injuries.
Resumo:
Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/squ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω−1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.
Resumo:
Light-emitting field effect transistors (LEFETs) are an emerging class of multifunctional optoelectronic devices. It combines the light emitting function of an OLED with the switching function of a transistor in a single device architecture the dual functionality of LEFETs has the potential applications in active matrix displays. However, the key problem of existing LEFETs thus far has been their low EQEs at high brightness, poor ON/OFF and poorly defined light emitting area-a thin emissive zone at the edge of the electrodes. Here we report heterostructure LEFETs based on solution processed unipolar charge transport and an emissive polymer that have an EQE of up to 1% at a brightness of 1350a €...cd/m 2, ON/OFF ratio > 10 4 and a well-defined light emitting zone suitable for display pixel design. We show that a non-planar hole-injecting electrode combined with a semi-transparent electron-injecting electrode enables to achieve high EQE at high brightness and high ON/OFF ratio. Furthermore, we demonstrate that heterostructure LEFETs have a better frequency response (f cut-off = 2.6a €...kHz) compared to single layer LEFETs the results presented here therefore are a major step along the pathway towards the realization of LEFETs for display applications.
Resumo:
Light emitting field effect transistors (LEFETs) are emerging as a multi-functional class of optoelectronic devices. LEFETs can simultaneously execute light emission and the standard logic functions of a transistor in a single architecture. However, current LEFET architectures deliver either high brightness or high efficiency but not both concurrently, thus limiting their use in technological applications. Here we show an LEFET device strategy that simultaneously improves brightness and efficiency. The key step change in LEFET performance arises from the bottom gate top-contact device architecture in which the source/drain electrodes are semitransparent and the active channel contains a bi-layer comprising of a high mobility charge-transporting polymer, and a yellow-green emissive polymer. A record external quantum efficiency (EQE) of 2.1% at 1000cd/m2 is demonstrated for polymer based bilayer LEFETs.
Resumo:
Bottom emitting organic light emitting diodes (OLEDs) can suffer from lower external quantum efficiencies (EQE) due to inefficient out-coupling of the generated light. Herein, it is demonstrated that the current efficiency and EQE of red, yellow, and blue fluorescent single layer polymer OLEDs is significantly enhanced when a MoOx(5 nm)/Ag(10 nm)/MoOx(40 nm) stack is used as the transparent anode in a top emitting OLED structure. A maximum current efficiency and EQE of 21.2 cd/A and 6.7%, respectively, was achieved for a yellow OLED, while a blue OLED achieved a maximum of 16.5 cd/A and 10.1%, respectively. The increase in light out-coupling from the top-emitting OLEDs led to increase in efficiency by a factor of up to 2.2 relative to the optimised bottom emitting devices, which is the best out-coupling reported using solution processed polymers in a simple architecture and a significant step forward for their use in large area lighting and displays.
Resumo:
Flexible multilayer electrodes that combine high transparency, high conductivity, and efficient charge extraction have been deposited, characterised and used as the anode in organic solar cells. The anode consists of an AZO/Ag/AZO stack plus a very thin oxide interlayer whose ionization potential is fine-tuned by manipulating its gap state density to optimise charge transfer with the bulk heterojunction active layer consisting of poly(n-3- hexylthiophene-2,5-diyl) and phenyl-C61-butyric acid methyl ester (P3HT:BC61BM). The deposition method for the stack was compatible with the low temperatures required for polymer substrates. Optimisation of the electrode stack was achieved by modelling the optical and electrical properties of the device and a power conversion efficiency of 2.9% under AM1.5 illumination compared to 3.0% with an ITO-only anode and 3.5% for an ITO:PEDOT electrode. Dark I-V reverse bias characteristics indicate very low densities of occupied buffer states close to the HOMO level of the hole conductor, despite observed ionization potential being high enough. Their elimination should raise efficiency to that with ITO:PEDOT.
Resumo:
Target-tilted room temperature sputtering of aluminium doped zinc oxide (AZO) provides transparent conducting electrodes with sheet resistances of <10 Ω □-1 and average transmittance in the visible region of up to 84%. The properties of the AZO electrode are found to be strongly dependent on the target-tilting angle and film thickness. The AZO electrodes showed comparable performance to commercial indium tin oxide (ITO) electrodes in organic photovoltaic (OPV) devices. OPV devices containing a bulk heterojunction active layer comprised of poly(3-n-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) and an AZO transparent conducting electrode had a power conversion efficiency (PCE) of up to 2.5% with those containing ITO giving a PCE of 2.6%. These results demonstrate that AZO films are a good alternative to ITO for transparent conducting electrodes.
Resumo:
An innovative design strategy for light emitting field effect transistors (LEFETs) to harvest higher luminance and switching is presented. The strategy uses a non-planar electrode geometry in tri-layer LEFETs for simultaneous enhancement of the key parameters of quantum efficiency, brightness, switching, and mobility across the RGB color gamut.
Resumo:
Alcohol is implicated in over 60 diseases and injuries and accounted for 6.2 per cent of all male deaths globally in 2004 (WHO, 2011). Alcohol and other drug (AOD) abuse causes significant individual, family and social harms at all age levels and across all socioeconomic groups. These may result from intoxication (e.g., overdose, vulnerability to physical injury/trauma or death, consequences of impulsive behaviour, aggression and driving under the influence) and longer-term consequences (e.g., alcohol or drug-related brain injury, cardiovascular and liver diseases, blood borne viruses e.g., Chikritzhs et al., 2003, Roxburgh et al., 2013). Mental health problems may be triggered or exacerbated, and family breakdown, poor self-esteem, legal issues and lack of community engagement may also be evident. Despite the prevalence of substance use disorders and evident consequences for the individual, family and wider community, it would seem that health professionals, including psychologists, are reluctant to ask about substance use.
Resumo:
Apple Inc. has often portrayed itself as the champion of consumers, with its advertising campaigns on “1984”, “Think Different”, and “Rip, Mix, Burn”. However, this reputation has been called into question after Apple refused to appear before the Parliament’s inquiry into IT Pricing in Australia and explain its pricing policies in Australia.
Resumo:
A roll-to-roll compatible, high throughput process is reported for the production of highly conductive, transparent planar electrode comprising an interwoven network of silver nanowires and single walled carbon nanotubes imbedded into poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The planar electrode has a sheet resistance of between 4 and 7 Ω □−1 and a transmission of >86% between 800 and 400 nm with a figure of merit of between 344 and 400 Ω−1. The nanocomposite electrode is highly flexible and retains a low sheet resistance after bending at a radius of 5 mm for up to 500 times without loss. Organic photovoltaic devices containing the planar nanocomposite electrodes had efficiencies of ∼90% of control devices that used indium tin oxide as the transparent conducting electrode.
Resumo:
From 2008-09 to 2012-13, the most prevalent worker compensation claim in the Queensland Ambulance Service (QAS) was musculoskeletal injuries at >80%. This is consistent with literature that shows Musculoskeletal Disorders (MSD) was one of the front runners for workplace injuries among many professions. In an attempt to reduce the injury rate and related claims, the QAS created a selection criterion for their workers based on the Health Related Fitness Test. This method intended to select workers based upon their fitness level, instead of selecting for their ability to perform the tasks or modify the tasks to better suit the workers. With injury rates remaining high, further research produced the Patient Handling Equipment Project Report, which provided the background for the Manual Handling Program Book. The Manual Handling Program Book however lacks in accurately addressing musculoskeletal hazards; actions which cause or avoid injury, correct posture and motion for patient movement, muscular biomechanics, static and dynamic workload including activities causing strain, and equipment use in relation to musculoskeletal hazards. The exploratory research aims to better understand the ambulance service’s perception of Manual Materials Handling (MMH), how it relates to musculoskeletal injuries and how the service has attempted to reduce its prevalence. Based on a literature review and a critical analysis of the QAS Health Related Fitness Test, QAS Patient Handling Equipment Project Report and the QAS Manual Handling Program Book, an understanding of their shortfalls in the prevention of musculoskeletal injuries was gained. This entails understanding the work tasks, workloads, strains and workflow of paramedics. This research creates a starting point for further research into musculoskeletal injuries in paramedics. This study specifically looks at hazards related to musculoskeletal disorders. It identifies work system deficiencies that contribute to the prevalence of musculoskeletal injuries, and possible interventions to avoid them in paramedics.
Resumo:
Hamstring strain injuries are the predominant injury in many sports, costing athletes and clubs a significant financial and performance burden. Therefore the ability to identify and intervene with individuals who are considered at a high risk of injury is important. One measure which has grown in popularity as an outcome variable following hamstring intervention/prevention studies and rehabilitation is the angle of peak knee flexor torque. This current opinion article will firstly introduce the measure and the processes behind it. Secondly, this article will summarise how the angle of peak knee flexor torque has been suggested to measure hamstring strain injury risk. Finally various limitations will be presented and outlined as to how they may influence the measure. These include the lack of muscle specificity, the common concentric contraction mode of assessment, reliability of the measure, various neural contributions (such as rate of force development and neuromuscular inhibition) as well as the lack of prospective data showing any predictive value in the measure.
Resumo:
Objectives: To examine the association of maternal pregravid body mass index (BMI) and child offspring, all-cause hospitalisations in the first 5 years of life. Methods: Prospective birth cohort study. From 2006 to 2011, 2779 pregnant women (2807 children) were enrolled in the Environments for Healthy Living: Griffith birth cohort study in South-East Queensland, Australia. Hospital delivery record and self-report baseline survey of maternal, household and demographic factors during pregnancy were linked to the Queensland Hospital Admitted Patients Data Collection from 1 November 2006 to 30 June 2012, for child admissions. Maternal pregravid BMI was classified as underweight (<18.5 kg m−2), normal weight (18.5–24.9 kg m−2), overweight (25.0–29.9 kg m−2) or obese (30 kg m−2). Main outcomes were the total number of child hospital admissions and ICD-10-AM diagnostic groupings in the first 5 years of life. Negative binomial regression models were calculated, adjusting for follow-up duration, demographic and health factors. The cohort comprised 8397.9 person years (PYs) follow-up. Results: Children of mothers who were classified as obese had an increased risk of all-cause hospital admissions in the first 5 years of life than the children of mothers with a normal BMI (adjusted rate ratio (RR) =1.48, 95% confidence interval 1.10–1.98). Conditions of the nervous system, infections, metabolic conditions, perinatal conditions, injuries and respiratory conditions were excessive, in both absolute and relative terms, for children of obese mothers, with RRs ranging from 1.3–4.0 (PYs adjusted). Children of mothers who were underweight were 1.8 times more likely to sustain an injury or poisoning than children of normal-weight mothers (PYs adjusted). Conclusion: Results suggest that if the intergenerational impact of maternal obesity (and similarly issues related to underweight) could be addressed, a significant reduction in child health care use, costs and public health burden would be likely.