978 resultados para Bridges -- Contests
Resumo:
The current means and methods of verifying that high-strength bolts have been properly tightened are very laborious and time consuming. In some cases, the techniques require special equipment and, in other cases, the verification itself may be somewhat subjective. While some commercially available verification techniques do exist, these options still have some limitations and might be considered costly options. The main objectives of this project were to explore high-strength bolt-tightening and verification techniques and to investigate the feasibility of developing and implementing new alternatives. A literature search and a survey of state departments of transportation (DOTs) were conducted to collect information on various bolt-tightening techniques such that an understanding of available and under-development techniques could be obtained. During the literature review, the requirements for materials, inspection, and installation methods outlined in the Research Council on Structural Connections specification were also reviewed and summarized. To guide the search for finding new alternatives and technology development, a working group meeting was held at the Iowa State University Institute for Transportation October 12, 2015. During the meeting, topics central to the research were discussed with Iowa DOT engineers and other professionals who have relevant experiences.
Resumo:
Wiss, Janney, Elstner Associates, Inc. (WJE) evaluated potential nondestructive evaluation (NDE) methodologies that may be effective in 1) identifying internal defects within slip formed concrete barriers and 2) assessing the corrosion condition of barrier dowel bars. The evaluation was requested by the Bridge Maintenance and Inspection Unit of the Iowa Department of Transportation (IaDOT) and the Bureau of Bridges and Structures of the Illinois Department of Transportation (IDOT). The need arose due to instances in each Department’s existing inventory of bridge barriers where internal voids and other defects associated with slip forming construction methods were attributed to poor barrier performance after completion of construction and where, in other barrier walls, unintentional exposure of the dowel bars revealed extensive corrosion-related section loss at previously uninspectable locations, reducing the capacity of the barriers to resist traffic impact loads. WJE trial tested potential NDE techniques on laboratory mock-up samples built with known defects, trial sections of cast-in-place barriers at in-service bridges in Iowa, and slip formed and cast-in-place barrier walls at in-service bridges in Illinois. The work included review of available studies performed by others, field trial testing to assess candidate test methods, verification of the test methods in identifying internal anomalies and dowel bar corrosion, and preparation of this report and nondestructive evaluation guidelines.
Resumo:
Iowa's secondary roads contain nearly 15,000 bridges which are less than 40 feet (12 m) in length. Many of these bridges were built several decades ago and need to be replaced. Box culvert construction has proven to be an adequate bridge replacement technique. Recently a new bridge replacement alternative, called the Air-0-Form method, has emerged which has several potential advantages over box culvert construction. This new technique uses inflated balloons as the interior form in the construction of an arch culvert. The objective of research project HR-314 was to construct an air formed arch culvert to determine the applicability of the Air-O-Form technique as a county bridge replacement alternative.
Resumo:
The Iowa Department of Transportation used a high molecular weight methacrylate (HMWM) resin to seal a 3,340 ft. x 64 ft. bridge deck in October 1986. The sealing was necessary to prevent deicing salt brine from entering a substantial number of transverse cracks that coincided with the epoxy coated top steel and unprotected bottom steel. HMWM resin is a three component product composed of a monomer, a curnene hydroperoxide initiator and a cobalt naphthenate promoter. The HMWM was applied with a dual spray bar system and flat-fan nozzles. Initiated monomer delivered through one spray bar was mixed in the air with promoted monomer from the other spray bar. The application rate averaged 0.956 gallons per 100 square feet for the tined textured driving lanes. Dry sand was broadcast on the surface at an average coverage of 0.58 lbs. per square yard to maintain friction. Coring showed that the H.MWM resin penetrated the cracks more than two inches deep. Testing of the treated deck yielded Friction Numbers averaging 33 with a treaded tire compared to 36 prior to treatment. An inspection soon after treatment found five leaky cracks in one of the 15 spans. One inspection during a steady rain showed no leakage, but leakage from numerous cracks occurred during a subsequent rain. A second HMWM application was made on two spans to determine if a double application would prevent leakage. This evaluation has not been completed.
Resumo:
Use of bridge deck overlays is important in maximizing bridge service life. Overlays can replace the deteriorated part of the deck, thus extending the bridge life. Even though overlay construction avoids the construction of a whole new bridge deck, construction still takes significant time in re-opening the bridge to traffic. Current processes and practices are time-consuming and multiple opportunities may exist to reduce overall construction time by modifying construction requirements and/or materials utilized. Reducing the construction time could have an effect on reducing the socioeconomic costs associated with bridge deck rehabilitation and the inconvenience caused to travelers. This work included three major tasks with literature review, field investigation, and laboratory testing. Overlay concrete mix used for present construction takes long curing hours and therefore an investigation was carried out to find fast-curing concrete mixes that could reduce construction time. Several fast-cuing concrete mixes were found and suggested for further evaluation. An on-going overlay construction project was observed and documented. Through these observations, several opportunities were suggested where small modifications in the process could lead to significant time savings. With current standards of the removal depth of substrate concrete in Iowa, it takes long hours for the removal process. Four different laboratory tests were performed with different loading conditions to determine the necessary substrate concrete removal depth for a proper bond between the substrate concrete and the new overlay concrete. Several parameters, such as failure load, bond stress, and stiffness, were compared for four different concrete removal depths. Through the results and observations of this investigation several conclusions were made which could reduce bridge deck overlay construction time.
Resumo:
The purpose of this manual is to provide guidelines for low water stream crossings (LWSC). Rigid criteria for determining the applicability of a LWSC to a given site are not established nor is a 'cookbook" procedure for designing a LWSC presented. Because conditions vary from county to county and from site to site within the county, judgment must be applied to the suggestions contained in this manual. A LWSC is a stream crossing that will be flooded periodically and closed to traffic. Carstens (1981) has defined a LWSC as "a ford, vented ford (one having some number of culvert pipes), low water bridge, or other structure that is designed so that its hydraulic capacity will be insufficient one or more times during a year of normal rainfall." In this manual, LWSC are subdivided into these same three main types: unvented fords, vented fords and low water bridges. Within the channel banks, an unvented ford can have its road profile coincident with the stream bed or can have its profile raised some height above the stream bed.
Resumo:
The paper presents a method of analyzing Rigid Frames by use of the Conjugate Beam Theory. The development of the method along with an example is given. This method has been used to write a computer program for the analysis of twin box culverts. The culverts may be analyzed under any fill height and any of the standard truck loadings. The wall and slab thickness are increased by the computer program as necessary. The final result is steel requirements both for moment and shear, and the slab and wall thickness.
Resumo:
Four series of five specimens each were investigated for static and fatigue strength. These four series differed in that there were two variables, the first being the subsidence of concrete around reinforcing bars and the second being shrinkage due to two different curing conditions. The combinations of these variables were then compared to each other by use of, load-deflection curves and S-H fatigue curves.
Resumo:
In 1957, the Iowa State Highway Commission, with financial assistance from the aluminum industry, constructed a 220-ft (67-m) long, four-span continuous, aluminum girder bridge to carry traffic on Clive Road (86th Street) over Interstate 80 near Des Moines, Iowa. The bridge had four, welded I-shape girders that were fabricated in pairs with welded diaphragms between an exterior and an interior girder. The interior diaphragms between the girder pairs were bolted to girder brackets. A composite, reinforced concrete deck served as the roadway surface. The bridge, which had performed successfully for about 35 years of service, was removed in the fall of 1993 to make way for an interchange at the same location. Prior to the bridge demolition, load tests were conducted to monitor girder and diaphragm bending strains and deflections in the northern end span. Fatigue testing of the aluminum girders that were removed from the end spans were conducted by applying constant-amplitude, cyclic loads. These tests established the fatigue strength of an existing, welded, flange-splice detail and added, welded, flange-cover plates and horizontal web plate attachment details. This part, Part 2, of the final report focuses on the fatigue tests of the aluminum girder sections that were removed from the bridge and on the analysis of the experimental data to establish the fatigue strength of full-size specimens. Seventeen fatigue fractures that were classified as Category E weld details developed in the seven girder test specimens. Linear regression analyses of the fatigue test results established both nominal and experimental stress-range versus load cycle relationships (SN curves) for the fatigue strength of fillet-welded connections. The nominal strength SN curve obtained by this research essentially matched the SN curve for Category E aluminum weldments given in the AASHTO LRFD specifications. All of the Category E fatigue fractures that developed in the girder test specimens satisfied the allowable SN relationship specified by the fatigue provisions of the Aluminum Association. The lower-bound strength line that was set at two standard deviations below the least squares regression line through the fatigue fracture data points related well with the Aluminum Association SN curve. The results from the experimental tests of this research have provided additional information regarding behavioral characteristics of full-size, aluminum members and have confirmed that aluminum has the strength properties needed for highway bridge girders.
Resumo:
A noise wall was investigated to assess its effect on snow accumulation and air quality. Wind tunnel studies were undertaken to evaluate (a) possible snow accumulations and (b) the dispersion of particulate concentrations (dust, smoke, and lead particles) and carbon monoxide. Full-scale monitoring of particulate concentrations and carbon monoxide was performed both before and after the noise wall was constructed. The wind tunnel experiments for snow accumulation were conducted on a model wall located in a flat, unobstructed area. A separated flow zone existed upwind of the wall and snow immediately began to accumulate over most of the separated zone. Having the noise wall in an aerodynamically rough area, such as in an urban area as this one was, substantially decreased the amount of snow collected, compared with in the wind tunnel studies, because of turbulence reducing the separation zone. The snow accumulation has not been significantly greater with the noise wall in place than it was before construction and has proven to be of no concern to date. Monitoring for particulate concentrations has shown that the noise wall has had a beneficial effect because the amount of material collected was reduced. With the noise wall in place, monitoring for carbon monoxide has indicated that (a) for equivalent emissions under conditions of high atmospheric stability and low wind speeds, the carbon monoxide levels would be lower; and (b) under conditions of low atmospheric stability and high wind speeds, the carbon monoxide levels would be higher than expected without the wall in place.
Resumo:
Postprint (published version)
Resumo:
Postprint (published version)
Resumo:
Postprint (published version)
Resumo:
Many engineering problems that can be formulatedas constrained optimization problems result in solutionsgiven by a waterfilling structure; the classical example is thecapacity-achieving solution for a frequency-selective channel.For simple waterfilling solutions with a single waterlevel and asingle constraint (typically, a power constraint), some algorithmshave been proposed in the literature to compute the solutionsnumerically. However, some other optimization problems result insignificantly more complicated waterfilling solutions that includemultiple waterlevels and multiple constraints. For such cases, itmay still be possible to obtain practical algorithms to evaluate thesolutions numerically but only after a painstaking inspection ofthe specific waterfilling structure. In addition, a unified view ofthe different types of waterfilling solutions and the correspondingpractical algorithms is missing.The purpose of this paper is twofold. On the one hand, itoverviews the waterfilling results existing in the literature from aunified viewpoint. On the other hand, it bridges the gap betweena wide family of waterfilling solutions and their efficient implementationin practice; to be more precise, it provides a practicalalgorithm to evaluate numerically a general waterfilling solution,which includes the currently existing waterfilling solutions andothers that may possibly appear in future problems.
Resumo:
Recent efforts to implement gender mainstreaming in the field of security sector reform have resulted in an international policy discourse on gender and security sector reform (GSSR). Critics have challenged GSSR for its focus on 'adding women' and its failure to be transformative. This article contests this assessment, demonstrating that GSSR is not only about 'adding women', but also, importantly, about 'gendering men differently' and has important albeit problematic transformative implications. Drawing on poststructuralist and postcolonial feminist theory, I propose a critical reading of GSSR policy discourse in order to analyse its built-in logics, tensions and implications. I argue that this discourse establishes a powerful 'grid of intelligibility' that draws on gendered and racialized dualisms to normalize certain forms of subjectivity while rendering invisible and marginalizing others, and contributing to reproduce certain forms of normativity and hierarchy. Revealing such processes of discursive in/exclusion and marginalized subjectivities can serve as a starting point to challenge and transform GSSR practice and identify sites of contestation.