950 resultados para Birthing Centers
Resumo:
This manual presents geographic information by state of occurrence, and descriptions of the socio-economic impact created by the invasion of non-indigenous and native transplanted animal species in the Laurentian Great Lakes and the coastal waters of the United States. It is not a comprehensive literature review, but rather is intended as a primer for those unfamiliar with the socio-economic impacts of invasive aquatic and marine animals. Readers should also note that the information contained in this manual is current as of its publication date. New information and new species are routinely being added to the wider literature base. Most of the information was gathered from a number of web sites maintained by government agencies, commissions, academic institutions and museums. Additional information was taken from the primary and secondary literature. This manual focuses on socio-economic consequences of invasive species. Thus, ecological impacts, when noted in the literature, are not discussed unless a connection to socio-economic factors can be made. For a majority of the species listed, either the impact of their invasion is not understood, or it is not published in sources surveyed. In the species summaries, sources of information are cited except for information from the U.S. Geological Survey’s (USGS) Nonindigenous Aquatic Species Database http://nas.er.usgs.gov. This website formed the base information used in creating tables on geographic distribution, and in many of the species summaries provided. Thus, whenever information is given without specific author/source and date citation, it has come from this comprehensive source. (PDF contains 90 pages)
Resumo:
Executive Summary: Information found in this report covers the years 1986 through 2005. Mussel Watch began monitoring a suite of trace metals and organic contaminants such as DDT, PCBs and PAHs. Through time additional chemicals were added, and today approximately 140 analytes are monitored. The Mussel Watch Program is the longest running estuarine and coastal pollutant monitoring effort conducted in the United States that is national in scope each year. Hundreds of scientific journal articles and technical reports based on Mussel Watch data have been written; however, this report is the first that presents local, regional and national findings across all years in a Quick Reference format, suitable for use by policy makers, scientists, resource managers and the general public. Pollution often starts at the local scale where high concentrations point to a specific source of contamination, yet some contaminants such as PCBs are atmospherically transported across regional and national scales, resulting in contamination far from their origin. Findings presented here showed few national trends for trace metals and decreasing trends for most organic contaminants; however, a wide variety of trends, both increasing and decreasing, emerge at regional and local levels. For most organic contaminants, trends have resulted from state and federal regulation. The highest concentrations for both metal and organic contaminants are found near urban and industrial areas. In addition to monitoring throughout the nation’s coastal shores and Great Lakes, Mussel Watch samples are stored in a specimen bank so that trends can be determined retrospectively for new and emerging contaminants of concern. For example, there is heightened awareness of a group of flame retardants that are finding their way into the marine environment. These compounds, known as polybrominated diphenyl ethers (PBDEs), are now being studied using historic samples from the specimen bank and current samples to determine their spatial distribution. We will continue to use this kind of investigation to assess new contaminant threats. We hope you find this document to be valuable, and that you continue to look towards the Mussel Watch Program for information on the condition of your coastal waters. (PDF contains 118 pages)
Resumo:
As a Federal trust species, the well-being of the striped bass (Morone saxatilis) population along the Eastern Seaboard is of major concern to resource users. Striped bass are an extremely valuable commercial and recreational resource. As a principal piscivore in Chesapeake Bay, striped bass directly or indirectly interact with multiple trophic levels within the ecosystem and are therefore very sensitive to biotic and abiotic ecosystem changes. For reasons that have yet to be defined, the species has a high intrinsic susceptibility to mycobacteriosis. This disease has been impacting Chesapeake Bay striped bass since at least the 1980s as indicated by archived tissue samples. However, it was not until heightened incidences of fish with skin lesions in the Pocomoke River and other tributaries of the Chesapeake Bay were reported in the summer and fall of 1996 and 1997 that a great deal of public and scientific interest was stimulated about concerns for fish disease in the Bay. (PDF contains 50 pages)
Resumo:
The health and continued existence of coral reef ecosystems are threatened by an increasing array of environmental and anthropogenic impacts. Coral disease is one of the prominent causes of increased mortality among reefs globally, particularly in the Caribbean. Although over 40 different coral diseases and syndromes have been reported worldwide, only a few etiological agents have been confirmed; most pathogens remain unknown and the dynamics of disease transmission, pathogenicity and mortality are not understood. Causal relationships have been documented for only a few of the coral diseases, while new syndromes continue to emerge. Extensive field observations by coral biologists have provided substantial documentation of a plethora of new pathologies, but our understanding, however, has been limited to descriptions of gross lesions with names reflecting these observations (e.g., black band, white band, dark spot). To determine etiology, we must equip coral diseases scientists with basic biomedical knowledge and specialized training in areas such as histology, cell biology and pathology. Only through combining descriptive science with mechanistic science and employing the synthesis epizootiology provides will we be able to gain insight into causation and become equipped to handle the pending crisis. One of the critical challenges faced by coral disease researchers is to establish a framework to systematically study coral pathologies drawing from the field of diagnostic medicine and pathology and using generally accepted nomenclature. This process began in April 2004, with a workshop titled Coral Disease and Health Workshop: Developing Diagnostic Criteria co-convened by the Coral Disease and Health Consortium (CDHC), a working group organized under the auspices of the U.S. Coral Reef Task Force, and the International Registry for Coral Pathology (IRCP). The workshop was hosted by the U.S. Geological Survey, National Wildlife Health Center (NWHC) in Madison, Wisconsin and was focused on gross morphology and disease signs observed in the field. A resounding recommendation from the histopathologists participating in the workshop was the urgent need to develop diagnostic criteria that are suitable to move from gross observations to morphological diagnoses based on evaluation of microscopic anatomy. (PDF contains 92 pages)
Resumo:
From a manager’s perspective, oftentimes the publicly held concerns related to small docks and piers are not really related to the environment. They may be more related to visual impacts and aesthetic concerns, a sense of over-development of the shore, or simply change. While individuals may hold personal aesthetic values related to small docks in general or an individual structure in particular, techniques have evolved that appear to provide reproducible, predictive assessments of the visual impacts and aesthetic values of an area and how those might change with development, including an increase in numbers of small docks. These assessments may be used to develop regulatory or non-regulatory methods for the management of small docks based on state or community standards. Visual impact assessments are increasingly used in the regulatory review of proposed development—although this process is still in its infancy as regards small docks and piers. Some political jurisdictions have established visual impact or aesthetic standards as relate to docks and others are in the process of investigating how to go about such an effort. (PDF contains 42 pages)
Resumo:
Executive Summary: For over three decades, scientists have been documenting the decline of coral reef ecosystems, amid increasing recognition of their value in supporting high biological diversity and their many benefits to human society. Coral reef ecosystems are recognized for their benefits on many levels, such as supporting economies by nurturing fisheries and providing for recreational and tourism opportunities, providing substances useful for medical purposes, performing essential ecosystem services that protect against coastal erosion, and provid-ing a diversity of other, more intangible contributions to many cultures. In the past decade, the increased awareness regarding coral reefs has prompted action by governmental and non-governmental organizations, including increased funding from the U.S. Congress for conservation of these important ecosystems and creation of the U.S. Coral Reef Task Force (USCRTF) to coordinate activities and implement conservation measures [Presidential Executive Order 13089]. Numerous partnerships forged among Federal agencies and state, local, non-governmental, academic and private partners support activities that range from basic science to systematic monitoring of ecosystem com-ponents and are conducted by government agencies, non-governmental organizations, universities, and the private sector. This report shares the results of many of these efforts in the framework of a broad assessment of the condition of coral reef ecosystems across 14 U.S. jurisdictions and Pacific Freely Associated States. This report relies heavily on quantitative, spatially-explicit data that has been collected in the recent past and comparisons with historical data, where possible. The success of this effort can be attributed to the dedication of over 160 report contributors who comprised the expert writing teams for each jurisdiction. The content of the report chapters are the result of their considerable collaborative efforts. The writing teams, which were organized by jurisdiction and comprised of experts from numerous research and management institutions, were provided a basic chapter outline and a length limit, but the content of each chapter was left entirely to their discretion. Each jurisdictional chapter in the report is structured to: 1) describe how each of the primary threats identified in the National Coral Reef Action Strategy (NCRAS) has manifested in the jurisdiction; 2) introduce ongoing monitoring and assessment activities relative to three major categories of inquiry – water quality, benthic habitats, and associated biological communities – and provide summary results in a data-rich format; and 3) highlight recent management activities that promote conservation of coral reef ecosystems.
Resumo:
Executive Summary: The Estuary Restoration Act of 2000 (ERA), Title I of the Estuaries and Clean Waters Act of 2000, was created to promote the restoration of habitats along the coast of the United States (including the US protectorates and the Great Lakes). The NOAA National Centers for Coastal Ocean Science was charged with the development of a guidance manual for monitoring plans under this Act. This guidance manual, titled Science-Based Restoration Monitoring of Coastal Habitats, is written in two volumes. It provides technical assistance, outlines necessary steps, and provides useful tools for the development and implementation of sound scientific monitoring of coastal restoration efforts. In addition, this manual offers a means to detect early warnings that the restoration is on track or not, to gauge how well a restoration site is functioning, to coordinate projects and efforts for consistent and successful restoration, and to evaluate the ecological health of specific coastal habitats both before and after project completion (Galatowitsch et al. 1998). The following habitats have been selected for discussion in this manual: water column, rock bottom, coral reefs, oyster reefs, soft bottom, kelp and other macroalgae, rocky shoreline, soft shoreline, submerged aquatic vegetation, marshes, mangrove swamps, deepwater swamps, and riverine forests. The classification of habitats used in this document is generally based on that of Cowardin et al. (1979) in their Classification of Wetlands and Deepwater Habitats of the United States, as called for in the ERA Estuary Habitat Restoration Strategy. This manual is not intended to be a restoration monitoring “cookbook” that provides templates of monitoring plans for specific habitats. The interdependence of a large number of site-specific factors causes habitat types to vary in physical and biological structure within and between regions and geographic locations (Kusler and Kentula 1990). Monitoring approaches used should be tailored to these differences. However, even with the diversity of habitats that may need to be restored and the extreme geographic range across which these habitats occur, there are consistent principles and approaches that form a common basis for effective monitoring. Volume One, titled A Framework for Monitoring Plans under the Estuaries and Clean Waters Act of 2000, begins with definitions and background information. Topics such as restoration, restoration monitoring, estuaries, and the role of socioeconomics in restoration are discussed. In addition, the habitats selected for discussion in this manual are briefly described. (PDF contains 116 pages)
Resumo:
Healthy coastal habitats are not only important ecologically; they also support healthy coastal communities and improve the quality of people’s lives. Despite their many benefits and values, coastal habitats have been systematically modified, degraded, and destroyed throughout the United States and its protectorates beginning with European colonization in the 1600’s (Dahl 1990). As a result, many coastal habitats around the United States are in desperate need of restoration. The monitoring of restoration projects, the focus of this document, is necessary to ensure that restoration efforts are successful, to further the science, and to increase the efficiency of future restoration efforts.
Resumo:
Few issues confronting coastal resource managers are as divisive or difficult to manage as regulating the construction of private recreational docks and piers associated with residential development. State resource managers face a growing population intent on living on or near the coast, coupled with an increasing desire to have immediate access to the water by private docks or piers. (PDF contains 69 pages)
Resumo:
This document provides an overview of topical issues in Asian aquaculture for 2003, including a review of its status, progress in research and development, major issues and experiences, together with suggestions on actions for addressing opportunities and constraints. The document has been prepared by NACA and FAO to facilitate discussions at the 15th NACA Governing Council meeting, hosted by the Government of Sri Lanka on 21st-25th April 2004. The final version will be widely circulated as the editors hope it will prove a useful document for all involved in aquaculture, and related fishery development in the Asia-Pacific region. Pending feedback on this 2003 document, further reviews may be considered by NACA and FAO as a way of bringing together regularly in one publication relevant and key issues facing development of aquaculture in the Asia-Pacific region. (PDF contains 153 pages)
Resumo:
Analyses of blood and liver samples from live captured sea otters and liver samples from beachcast sea otter carcasses off the remote Washington coast indicate relatively low exposure to contaminants, but suggest that even at the low levels measured, exposure may be indicated by biomarker response. Evidence of pathogen exposure is noteworthy - infectious disease presents a potential risk to Washington sea otters, particularly due to their small population size and limited distribution. During 2001 and 2002, 32 sea otters were captured, of which 28 were implanted with transmitters to track their movements and liver and blood samples were collected to evaluate contaminant and pathogen exposure. In addition, liver samples from fifteen beachcast animals that washed ashore between 1991 and 2002 were analyzed to provide historical information and a basis of reference for values obtained from live otters. The results indicate low levels of metals, butyltins, and organochlorine compounds in the blood samples, with many of the organochlorines not detected except polychlorinated biphenyls (PCBs), and a few aromatic hydrocarbons detected in the liver of the live captured animals. Aliphatic hydrocarbons were measurable in the liver from the live captured animals; however, some of these are likely from biogenic sources. A significant reduction of vitamin A storage in the liver was observed in relation to PCB, dibutyltin and octacosane concentration. A significant and strong positive correlation in vitamin A storage in the liver was observed for cadmium and several of the aliphatic hydrocarbons. Peripheral blood mononuclear cell (PBMC) cytochrome P450 induction was elevated in two of 16 animals and may be potentially related to aliphatic and aromatic hydrocarbon exposure. Mean concentration of total butyltin in the liver of the Washington beach-cast otters was more than 15 times lower than the mean concentration reported by Kannan et al. (1998) for Southern sea otters in California. Organochlorine compounds were evident in the liver of beach-cast animals, despite the lack of large human population centers and development along the Washington coast. Concentrations of PCBs and chlordanes (e.g., transchlordane, cis-chlordane, trans-nonachlor, cis-nonachlor and oxychlordane) in liver of Washington beach-cast sea otters were similar to those measured in Aleutian and California sea otters, excluding those from Monterey Bay, which were higher. Mean concentrations of 1,1,1,- trichloro-2,2-bis(p-chlorophyenyl)ethanes (DDTs) were lower, and mean concentrations of cyclohexanes (HCH, e.g., alpha BHC, beta BHC, delta BHC and gamma BHC) were slightly higher in Washington beach-cast otters versus those from California and the Aleutians. Epidemiologically, blood tests revealed that 80 percent of the otters tested positive for morbillivirus and 60 percent for Toxoplasma, the latter of which has been a significant cause of mortality in Southern sea otters in California. This is the first finding of positive morbillivirus titers in sea otters from the Northeast Pacific. Individual deaths may occur from these diseases, perhaps more so when animals are otherwise immuno-compromised or infected with multiple diseases, but a population-threatening die-off from these diseases singly is unlikely while population immunity remains high. The high frequency of detection of morbillivirus and Toxoplasma in the live otters corresponds well with the cause of death of stranded Washington sea otters reported herein, which has generally been attributable to infectious disease. Washington’s sea otter population continues to grow, with over 1100 animals currently inhabiting Washington waters; however, the rate of growth has slowed over recent years. The population has a limited distribution and has not yet reached its carrying capacity and as such, is still considered at high risk to catastrophic events. (PDF contains 189 pages)
Resumo:
Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral/sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises. Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedimentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed. (PDF contains 60 pages.)
Resumo:
[EN] This paper is an outcome of the ERASMUS IP program called TOPCART, there are more information about this project that can be accessed from the following item:
Resumo:
The following series of fishery publications produced in calendar years 1980-85 by the Scientific Publications OffIce of the National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), are listed numerically and indexed by author and subject: Circular, Fishery BuUetin, Marine Fisheries Review, Special Scientific Report-Fisheries, and Technical Report NMFS. Also included is an alphanumeric listing of the NOAA Technical Memorandum NMFS series published in calendar years 1972-85 by NMFS regional offices and fisheries centers. Authors and subjects for the Memoradum series are indexed with the other publication series. (PDF file contains 156 pages.)
Resumo:
A two day workshop was convened on February 2-3, 1998 in Charleston, SC with 20 invited experts in various areas of sea turtle research. The goal of this workshop was to review current information on sea turtles with repect to health and identify data gaps. The use of a suite of health assessment indicators will provide insight on the health status of sea turtle populations. Since the relationship of health factors of sea turtles is limited, a seconde workshop was planned. Using a tiered approach, the first workshop we identified and reviewed the available, pertinent baseline information and data gaps. The second workshop will focus on developing the framework for the research plan. The workshops will address the use of integrated set of health parameters; specific objectives are: 1) Identify reliable indicators of health in sea turtles: assess advantages and disadvantages; determine new indicators/biomarkers which may be useful; 2) Review existing sea turtle field sampling projects; 3) Identify field projects suitable for inclusion for health assessment sampling; 4) Identify data gaps, particularly environmental characterization; 5) Identify new health assessment sampling sites, including reference site(s); and 6) Develop integrated five-year research plan, with focus on health assessment of environmental characterization. (PDF contains 174 pages)