1000 resultados para Automatization, VI coding, calibration, hot wire anemometry
Resumo:
The antikaon optical potential in hot and dense nuclear matter is studied within the framework of a coupled-channel self-consistent calculation taking, as bare meson-baryon interaction, the meson-exchange potential of the Jlich group. Typical conditions found in heavy-ion collisions at GSI are explored. As in the case of zero temperature, the angular momentum components larger than L=0 contribute significantly to the finite temperature antikaon optical potential at finite momentum. It is found that the particular treatment of the medium effects has a strong influence on the behavior of the antikaon potential with temperature. Our self-consistent model, in which antikaons and pions are dressed in the medium, gives a moderately temperature dependent antikaon potential which remains attractive at GSI temperatures, contrary to what one finds if only nuclear Pauli blocking effects are included.
Resumo:
Bulk and single-particle properties of hot hyperonic matter are studied within the Brueckner-Hartree-Fock approximation extended to finite temperature. The bare interaction in the nucleon sector is the Argonne V18 potential supplemented with an effective three-body force to reproduce the saturating properties of nuclear matter. The modern Nijmegen NSC97e potential is employed for the hyperon-nucleon and hyperon-hyperon interactions. The effect of temperature on the in-medium effective interaction is found to be, in general, very small and the single-particle potentials differ by at most 25% for temperatures in the range from 0 to 60 MeV. The bulk properties of infinite matter of baryons, either nuclear isospin symmetric or a Beta-stable composition that includes a nonzero fraction of hyperons, are obtained. It is found that the presence of hyperons can modify the thermodynamical properties of the system in a non-negligible way.
Resumo:
In recent years, reversible logic has emerged as one of the most important approaches for power optimization with its application in low power CMOS, quantum computing and nanotechnology. Low power circuits implemented using reversible logic that provides single error correction – double error detection (SEC-DED) is proposed in this paper. The design is done using a new 4 x 4 reversible gate called ‘HCG’ for implementing hamming error coding and detection circuits. A parity preserving HCG (PPHCG) that preserves the input parity at the output bits is used for achieving fault tolerance for the hamming error coding and detection circuits.
Resumo:
Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations
Resumo:
While channel coding is a standard method of improving a system’s energy efficiency in digital communications, its practice does not extend to high-speed links. Increasing demands in network speeds are placing a large burden on the energy efficiency of high-speed links and render the benefit of channel coding for these systems a timely subject. The low error rates of interest and the presence of residual intersymbol interference (ISI) caused by hardware constraints impede the analysis and simulation of coded high-speed links. Focusing on the residual ISI and combined noise as the dominant error mechanisms, this paper analyses error correlation through concepts of error region, channel signature, and correlation distance. This framework provides a deeper insight into joint error behaviours in high-speed links, extends the range of statistical simulation for coded high-speed links, and provides a case against the use of biased Monte Carlo methods in this setting
Resumo:
The presence of microcalcifications in mammograms can be considered as an early indication of breast cancer. A fastfractal block coding method to model the mammograms fordetecting the presence of microcalcifications is presented in this paper. The conventional fractal image coding method takes enormous amount of time during the fractal block encoding.procedure. In the proposed method, the image is divided intoshade and non shade blocks based on the dynamic range, andonly non shade blocks are encoded using the fractal encodingtechnique. Since the number of image blocks is considerablyreduced in the matching domain search pool, a saving of97.996% of the encoding time is obtained as compared to theconventional fractal coding method, for modeling mammograms.The above developed mammograms are used for detectingmicrocalcifications and a diagnostic efficiency of 85.7% isobtained for the 28 mammograms used.
Resumo:
Information display technology is a rapidly growing research and development field. Using state-of-the-art technology, optical resolution can be increased dramatically by organic light-emitting diode - since the light emitting layer is very thin, under 100nm. The main question is what pixel size is achievable technologically? The next generation of display will considers three-dimensional image display. In 2D , one is considering vertical and horizontal resolutions. In 3D or holographic images, there is another dimension – depth. The major requirement is the high resolution horizontal dimension in order to sustain the third dimension using special lenticular glass or barrier masks, separate views for each eye. The high-resolution 3D display offers hundreds of more different views of objects or landscape. OLEDs have potential to be a key technology for information displays in the future. The display technology presented in this work promises to bring into use bright colour 3D flat panel displays in a unique way. Unlike the conventional TFT matrix, OLED displays have constant brightness and colour, independent from the viewing angle i.e. the observer's position in front of the screen. A sandwich (just 0.1 micron thick) of organic thin films between two conductors makes an OLE Display device. These special materials are named electroluminescent organic semi-conductors (or organic photoconductors (OPC )). When electrical current is applied, a bright light is emitted (electrophosphorescence) from the formed Organic Light-Emitting Diode. Usually for OLED an ITO layer is used as a transparent electrode. Such types of displays were the first for volume manufacture and only a few products are available in the market at present. The key challenges that OLED technology faces in the application areas are: producing high-quality white light achieving low manufacturing costs increasing efficiency and lifetime at high brightness. Looking towards the future, by combining OLED with specially constructed surface lenses and proper image management software it will be possible to achieve 3D images.
Resumo:
The objective of this study was to determine the optimum row spacing to improve the productivity of two soybean (Glycine max L.) varieties under the tropical hot sub-moist agroecological conditions of Ethiopia. A two-year split-plot design experiment was conducted to determine the effect of variety (Awasa-95 [early-maturing], Afgat [medium-maturing]) and row spacing (RS: 20, 25, 30, 35, 40, 45, 50, 55, 60 cm) on the productivity, nodulation and weed infestation of soybean. Seed and total dry matter (TDM) yield per ha and per plant, and weed dry biomass per m^2 were significantly affected by RS. Soybean variety had a significant effect on plant density at harvest and some yield components (plant height, number of seeds/pod, and 1000 seed weight). Generally, seed and TDM yield per ha and per plant were high at 40 cm RS, and weed dry biomass per m^2 was higher for RS >= 40 cm than for narrower RS. However, the results did not demonstrate a consistent pattern along the RS gradient. The medium-maturing variety Afgat experienced higher mortality and ended up with lower final plant density at harvest, but higher plant height, number of seeds per pod and 1000 seed weight than the early-maturing variety Awasa-95. The results indicate that 40 cm RS with 5 cm plant spacing within a row can be used for high productivity and low weed infestation of both soybean varieties in the hot sub-moist tropical environment of south-western Ethiopia.
Resumo:
Actas de las sextas Jornadas celebradas en Murcia sobre educaci??n social organizadas por la Asociaci??n de Educadores Sociales de la Regi??n de Murcia, como celebraci??n de la constituci??n de su asociaci??n profesional, aprobada por la Asamblea Regional en marzo de 2004. Los temas abordados fueron: la educaci??n social en la Regi??n de Murcia, la educaci??n social como proyecto c??vico, presentaci??n del portal de la Asociaci??n, la profesionalizaci??n de los educadores sociales; los colegios profesionales en Espa??a, la diplomatura de educaci??n social en la Regi??n de Murcia y experiencias.
Resumo:
Encuentro regional de consejos escolares en el que se trat?? el tema de las evaluaciones del sistema educativo, present??ndose siete ponencias sobre: el programa PISA de la OCDE, evaluaci??n de programas, evaluci??n de procesos de ense??anza-aprendizaje, evaluaci??n de centros, de sistemas educativos y la participaci??n de los padres en la educaci??n.
Resumo:
En este CD se encuentran las ponencias del libro que, con el mismo t??tulo, se public?? en el a??o 2006.- Incluye im??genes del Encuentro.
Resumo:
Signalling off-chip requires significant current. As a result, a chip's power-supply current changes drastically during certain output-bus transitions. These current fluctuations cause a voltage drop between the chip and circuit board due to the parasitic inductance of the power-supply package leads. Digital designers often go to great lengths to reduce this "transmitted" noise. Cray, for instance, carefully balances output signals using a technique called differential signalling to guarantee a chip has constant output current. Transmitted-noise reduction costs Cray a factor of two in output pins and wires. Coding achieves similar results at smaller costs.