919 resultados para Asymmetric Mixtures
Resumo:
In this review, we consider the main processes for the asymmetric transfer hydrogenation of ketones from 2008 up today. The most effective organometallic compounds (derived from Ru, Rh, Ir, Fe, Os, Ni, Co, and Re) and chiral ligands (derived from amino alcohols, diamines, sulfur- and phosphorus-containing compounds, as well as heterocyclic systems) will be shown paying special attention to functionalized substrates, tandem reactions, processes under non-conventional conditions, supported catalysts, dynamic kinetic resolutions, the use of water as a green solvent, theoretical and experimental studies on reaction mechanisms, enzymatic processes, and finally applications to the total synthesis of biologically active organic molecules.
Resumo:
In this review article recent developments in the asymmetric transfer hydrogenation of imines from 2008 up to today are presented. The main methodology involves either metal-catalyzed procedures in the presence of a chiral ligand or organocatalyzed technologies using a Hantzsch ester and a chiral BINOL-derived phosphoric acid. The most important procedures are collected, paying special attention to the application of this methodology in synthetic organic chemistry.
Resumo:
Kainic acid has been used for nearly 50 years as a tool in neuroscience due to its pronounced neuroexcitatory properties. However, the significant price increase of kainic acid resulting from the disruption in the supply from its natural source, the alga Digenea Simplex, as well as inefficient synthesis of kainic acid, call for the exploration of functional mimics of kainic acid that can be synthesized in a simpler way. Aza kainoids analog could be one of them. The unsubstituted aza analog of kainoids has demonstrates its ability as an ionotropic glutamate receptor agonist and showed affinity in the chloride dependent glutamate (GluCl) binding site. This opened a question of the importance of the presence of one nitrogen or both nitrogens in the aza kainoid analogs for binding to glutamate receptors. Therefore, two different pyrrolidine analogs of kainic acid, trans-4-(carboxymethyl)pyrrolidine-3-carboxylic acid and trans-2-carboxy-3-pyrrolidineacetic acid, were synthesized through multi-step sequences. The lack of the affinity of both pyrrolidine analogs in GluCl binding site indicated that both nitrogens in aza kainoid analogs are involved in hydrogen bonding with receptors, significantly enhancing their affinity in GluCl binding site. Another potential functional mimic of kainic acid is isoxazolidine analogs of kainoids whose skeleton can be constituted directly via a 1, 3 dipolar cycloaddition as the key step. The difficulty in synthesizing N-unsubstituted isoxazolidines when applying such common protecting groups as alkyl, phenyl and benzyl groups, and the requirement of a desired enantioselectivity due to the three chiral ceneters in kainic acid, pose great challenges. Hence, several different protected nitrones were studied to establish that diphenylmethine nitrone may be a good candidate as the dipole in that the generated isoxazolidines can be deprotected in mild conditions with high yields. Our investigations also indicated that the exo/endo selectivity of the 1, 3 dipolar cycloaddition can be controlled by Lewis acids, and that the application of a directing group in dipolarophiles can accomplish a satisfied enantioselectivity. Those results demonstrated the synthesis of isoxazoldines analogs of kainic acid is very promising.
Resumo:
The Dirichlet process mixture model (DPMM) is a ubiquitous, flexible Bayesian nonparametric statistical model. However, full probabilistic inference in this model is analytically intractable, so that computationally intensive techniques such as Gibbs sampling are required. As a result, DPMM-based methods, which have considerable potential, are restricted to applications in which computational resources and time for inference is plentiful. For example, they would not be practical for digital signal processing on embedded hardware, where computational resources are at a serious premium. Here, we develop a simplified yet statistically rigorous approximate maximum a-posteriori (MAP) inference algorithm for DPMMs. This algorithm is as simple as DP-means clustering, solves the MAP problem as well as Gibbs sampling, while requiring only a fraction of the computational effort. (For freely available code that implements the MAP-DP algorithm for Gaussian mixtures see http://www.maxlittle.net/.) Unlike related small variance asymptotics (SVA), our method is non-degenerate and so inherits the “rich get richer” property of the Dirichlet process. It also retains a non-degenerate closed-form likelihood which enables out-of-sample calculations and the use of standard tools such as cross-validation. We illustrate the benefits of our algorithm on a range of examples and contrast it to variational, SVA and sampling approaches from both a computational complexity perspective as well as in terms of clustering performance. We demonstrate the wide applicabiity of our approach by presenting an approximate MAP inference method for the infinite hidden Markov model whose performance contrasts favorably with a recently proposed hybrid SVA approach. Similarly, we show how our algorithm can applied to a semiparametric mixed-effects regression model where the random effects distribution is modelled using an infinite mixture model, as used in longitudinal progression modelling in population health science. Finally, we propose directions for future research on approximate MAP inference in Bayesian nonparametrics.
Resumo:
Enantio- and diastereoselective hydrogenation of β-keto-γ-lactams with a ruthenium–BINAP catalyst, involving dynamic kinetic resolution, has been employed to provide a general, asymmetric approach to β-hydroxy-γ-lactams, a structural motif common to several bioactive compounds. Full conversion to the desired β-hydroxy-γ-lactams was achieved with high diastereoselectivity (up to >98% de) by addition of catalytic HCl and LiCl, while β-branching of the ketone substituent demonstrated a pronounced effect on the modest to excellent enantioselectivity (up to 97% ee) obtained.
Resumo:
An important aspect of constructing discrete velocity models (DVMs) for the Boltzmann equation is to obtain the right number of collision invariants. It is a well-known fact that DVMs can also have extra collision invariants, so called spurious collision invariants, in plus to the physical ones. A DVM with only physical collision invariants, and so without spurious ones, is called normal. For binary mixtures also the concept of supernormal DVMs was introduced, meaning that in addition to the DVM being normal, the restriction of the DVM to any single species also is normal. Here we introduce generalizations of this concept to DVMs for multicomponent mixtures. We also present some general algorithms for constructing such models and give some concrete examples of such constructions. One of our main results is that for any given number of species, and any given rational mass ratios we can construct a supernormal DVM. The DVMs are constructed in such a way that for half-space problems, as the Milne and Kramers problems, but also nonlinear ones, we obtain similar structures as for the classical discrete Boltzmann equation for one species, and therefore we can apply obtained results for the classical Boltzmann equation.
Resumo:
The production of AC was achieved using the most common industrial and consumer solid waste, namely PET, alone or blended with other synthetic polymer such PAN. The PET-PAN mixture (1:1 W/W %) was subjected to carbonization, with a pyrolysis yield off 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. By mixing PET, as a raw material, with PAN (different ratio), an improvement in the final yield of the AC production, for the same activation time, with CO2, was found.
Resumo:
The production of AC was achieved using the most common industrial and consumer solid waste, namely PET, alone or blended with other synthetic polymer such PAN. The PET-PAN mixture (1:1 W/W %) was subjected to carbonization, with a pyrolysis yield off 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. By mixing PET, as a raw material, with PAN (different ratio), an improvement in the final yield of the AC production, for the same activation time, with CO2, was found.
Resumo:
This article reports a combined thermodynamic, spectroscopic, and computational study on the interactions and structure of binary mixtures of hydrogenated and fluorinated substances that simultaneously interact through strong hydrogen bonding. Four binary mixtures of hydrogenated and fluorinated alcohols have been studied, namely, (ethanol + 2,2,2-trifluoroethanol (TFE)), (ethanol + 2,2,3,3,4,4,4-heptafluoro-1-butanol), (1-butanol (BuOH) + TFE), and (BuOH + 2,2,3,3,4,4,4-heptafluoro-1-butanol). Excess molar volumes and vibrational spectra of all four binary mixtures have been measured as a function of composition at 298 K, and molecular dynamics simulations have been performed. The systems display a complex behavior when compared with mixtures of hydrogenated alcohols and mixtures of alkanes and perfluoroalkanes. The combined analysis of the results from different approaches indicates that this results from a balance between preferential hydrogen bonding between the hydrogenated and fluorinated alcohols and the unfavorable dispersion forces between the hydrogenated and fluorinated chains. As the chain length increases, the contribution of dispersion increases and overcomes the contribution of H-bonds. In terms of the liquid structure, the simulations suggest the possibility of segregation between the hydrogenated and fluorinated segments, a hypothesis corroborated by the spectroscopic results. Furthermore, a quantitative analysis of the infrared spectra reveals that the presence of fluorinated groups induces conformational changes in the hydrogenated chains from the usually preferred all-trans to more globular arrangements involving gauche conformations. Conformational rearrangements at the CCOH dihedral angle upon mixing are also disclosed by the spectra.
Resumo:
The production of activated carbons (ACs) involves two main steps: the carbonization of the carbonaceous of raw materials at temperatures below 1073 K in the absence of oxygen and the activation had realized at the temperature up to 1173 but the most useful temperature at 1073 K. In our study we used the most common industrial and consumer solid waste, namely PET, alone or blended with other synthetic polymer PAN. By mixing the two polymers in different ratios, an improvement of the yield of the AC production was found and some textural properties were enhanced by comparison with the AC prepared using each polymer separately. When all the samples were exposed through the carbonization process with a pyrolysis the mixture of PAN-PET (1:1w/w) yield around 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. The combine activation, with CO2 at 1073 K, allow ACs with a lower burn-off degree isothermally, when compared with those attained with PET or PAN alone, but with similarly chemicals or textural properties. The resultant ACs are microporous in their nature, as the activation time increase, the PET-PAN mixture AC are characterized by a better developed porous structure, when associated with the AC prepared from PAN. The AC prepared from PET-PAN mixture are characterized by basic surface characteristics, with a pHpzc around 10.5, which is an important characteristic for future applications on acidic pollutants removals from liquid or gaseous phase. In this study we had used the FTIR methods to determine the main functional groups in the surface of the activated carbons. The adsorbents prepared from PAN fibres presents an IR spectrum with similar characteristics to those obtained with PET wastes, but with fewer peaks and bands with less intensity, in particular for the PAN-8240 sample. This can be reflected by the stretching and deformation modes of NH bond in the range 3100 – 3300 cm-1 and 1520 – 1650 cm-1, respectively. Also, stretching mode associated to C–N, C=N, can contributed to the profile of IR spectrum around 1170 cm-1, 1585 – 1770 cm-1. And the TGA methods was used to study the loses of the precursors mass according to the excessive of the temperature. The results showed that, there were different decreasing of the mass of each precursors. PAN degradation started at almost 573 K and at 1073 K, PAN preserve more than 40% of the initial mass. PET degradation started at 650 K, but at 1073 K, it has lost 80% of the initial mass. However, the mixture of PET-PAN (1:1w/w) showed a thermogravimetric profile between the two polymers tested individually, with a final mass slightly less than 30%. From a chemical point of view, the carbonisation of PET mainly occurs in one step between 650 and 775 K.
Resumo:
Asymmetric organocatalysed reactions are one of the most fascinating synthetic strategies which one can adopt in order to induct a desired chirality into a reaction product. From all the possible practical applications of small organic molecules in catalytic reaction, amine–based catalysis has attracted a lot of attention during the past two decades. The high interest in asymmetric aminocatalytic pathways is to account to the huge variety of carbonyl compounds that can be functionalized by many different reactions of their corresponding chiral–enamine or –iminium ion as activated nucleophile and electrophile, respectively. Starting from the employment of L–Proline, many useful substrates have been proposed in order to further enhance the catalytic performances of these reaction in terms of enantiomeric excess values, yield, conversion of the substrate and turnover number. In particular, in the last decade the use of chiral and quasi–enantiomeric primary amine species has got a lot of attention in the field. Contemporaneously, many studies have been carried out in order to highlight the mechanism through which these kinds of substrates induct chirality into the desired products. In this scenario, computational chemistry has played a crucial role due to the possibility of simulating and studying any kind of reaction and the transition state structures involved. In the present work the transition state geometries of primary amine–catalysed Michael addition reaction of cyclohexanone to trans–β–nitrostyrene with different organic acid cocatalysts has been studied through different computational techniques such as density functional theory based quantum mechanics calculation and force–field directed molecular simulations.
Resumo:
In this study, it was investigated the possibility of using a geopolymeric membrane as an alternative to the expensive ceramic ones. The goal was to synthesise a low-cost membrane made entirely of geopolymer that can perform equally to commercial membranes. This study initially investigated the feasibility of preparing a microporous support suitable for microfiltration through casting and pressing techniques. Subsequently, a selective geopolymeric layer was developed and deposited on the support, with the capability to operate within the microfiltration range and to effectively separate oil from oil-water emulsions. In order to evaluate the performance, the properties of the geopolymeric supports obtained through pressing were carefully evaluated during the experimentation phase investigating the effect of varying parameters such as sodium silicate content, water content, and applied pressure. The results obtained from these evaluations showed that it is possible to produce supports with excellent porosity and highly controlled narrow pore size distributions. The most promising geopolymeric pressed support was then used for the deposition of a selective layer on its surface. Following physical characterization, it was confirmed that the resulting geopolymer membrane was suitable for use in the microfiltration range. Subsequently, the membrane was tested for its ability to separate oil from water using various emulsions prepared with different surfactants at different concentrations and pH. The results revealed that the fluxes were highly dependent on the electrostatic interaction between the membrane and the emulsion, with best results being obtained with emulsions prepared using anionic surfactants. The rejection rate of the membrane was also found to be extremely high, with values over 95%, comparable to a commercial ceramic membrane. This suggests that geopolymer membranes are suitable alternatives to ceramic membranes, offering the added benefits of lower cost and reduced environmental impact during production.
Resumo:
In this thesis, new classes of models for multivariate linear regression defined by finite mixtures of seemingly unrelated contaminated normal regression models and seemingly unrelated contaminated normal cluster-weighted models are illustrated. The main difference between such families is that the covariates are treated as fixed in the former class of models and as random in the latter. Thus, in cluster-weighted models the assignment of the data points to the unknown groups of observations depends also by the covariates. These classes provide an extension to mixture-based regression analysis for modelling multivariate and correlated responses in the presence of mild outliers that allows to specify a different vector of regressors for the prediction of each response. Expectation-conditional maximisation algorithms for the calculation of the maximum likelihood estimate of the model parameters have been derived. As the number of free parameters incresases quadratically with the number of responses and the covariates, analyses based on the proposed models can become unfeasible in practical applications. These problems have been overcome by introducing constraints on the elements of the covariance matrices according to an approach based on the eigen-decomposition of the covariance matrices. The performances of the new models have been studied by simulations and using real datasets in comparison with other models. In order to gain additional flexibility, mixtures of seemingly unrelated contaminated normal regressions models have also been specified so as to allow mixing proportions to be expressed as functions of concomitant covariates. An illustration of the new models with concomitant variables and a study on housing tension in the municipalities of the Emilia-Romagna region based on different types of multivariate linear regression models have been performed.