945 resultados para Anaerobic bacteria
Resumo:
To evaluate the checkerboard DNA-DNA hybridization method for detection and quantitation of bacteria from the internal parts of dental implants and to compare bacterial leakage from implants connected either to cast or to pre-machined abutments. Nine plastic abutments cast in a Ni-Cr alloy and nine pre-machined Co-Cr alloy abutments with plastic sleeves cast in Ni-Cr were connected to Branemark-compatible implants. A group of nine implants was used as control. The implants were inoculated with 3 mu l of a solution containing 10(8) cells/ml of Streptococcus sobrinus. Bacterial samples were immediately collected from the control implants while assemblies were completely immersed in 5 ml of sterile Tripty Soy Broth (TSB) medium. After 14 days of anaerobic incubation, occurrence of leakage at the implant-abutment interface was evaluated by assessing contamination of the TSB medium. Internal contamination of the implants was evaluated with the checkerboard DNA-DNA hybridization method. DNA-DNA hybridization was sensitive enough to detect and quantify the microorganism from the internal parts of the implants. No differences in leakage and in internal contamination were found between cast and pre-machined abutments. Bacterial scores in the control group were significantly higher than in the other groups (P < 0.05). Bacterial leakage through the implant-abutment interface does not significantly differ when cast or pre-machined abutments are used. The checkerboard DNA-DNA hybridization technique is suitable for the evaluation of the internal contamination of dental implants although further studies are necessary to validate the use of computational methods for the improvement of the test accuracy. To cite this article:do Nascimento C, Barbosa RES, Issa JPM, Watanabe E, Ito IY, Albuquerque Junior RF. Use of checkerboard DNA-DNA hybridization to evaluate the internal contamination of dental implants and comparison of bacterial leakage with cast or pre-machined abutments.Clin. Oral Impl. Res. 20, 2009; 571-577.doi: 10.1111/j.1600-0501.2008.01663.x.
Resumo:
P>Aim To investigate the antibacterial effect of Tetraclean, MTAD and five experimental irrigants using both direct exposure test with planktonic cultures and mixed-species in vitro biofilm model. Methodology Tetraclean, MTAD and five experimental solutions that were modifications of existing formulae including MTAD + 0.01% cetrimide (CTR), MTAD + 0.1% CTR, MTAC-1 (Tween 80 replaced by 0.01% CTR in MTAD), MTAC-2 (Tween 80 replaced by 0.1% CTR) and MTAD-D (MTAD without the Tween 80 and no CTR added) were used as disinfectants in the experiments. In the direct exposure test, a suspension of Enterococcus faecalis was mixed with each of the solutions. After 0.5, 1, 3 and 10 min, an inactivator was added and the number of surviving bacteria was calculated. A mixed-species biofilm from subgingival plaque bacteria was grown in brain heart infusion broth in anaerobic conditions on synthetic hydroxyapatite discs. Two-week-old biofilms were exposed to the solutions for 0.5, 1 and 3 min. The samples were observed by confocal laser scanning microscopy after bacterial viability staining. The scans were quantitatively analysed, and the volume of killed cells of all cells was calculated for each medicament. Results Tetraclean and MTAC-2 (0.1% CTR) killed planktonic E. faecalis in < 30 s. Complete killing of bacteria required 1 min by MTAC-1, 3 min by MTAD + 0.1% CTR and 10 min by MTAD, MTAD-D and MTAD + 0.01% CTR. In the biofilm test, there were significant differences in microbial killing between the different solutions and times of exposure (P < 0.005). MTAC-2 showed the best performance, killing 71% of the biofilm bacteria in 3 min, followed by MTAC-1 and Tetraclean. MTAD and the three MTAD modifications demonstrated the lowest antibacterial activity. Conclusion Tetraclean was more effective than MTAD against E. faecalis in planktonic culture and in mixed-species in vitro biofilm. CTR improved the antimicrobial properties of the solutions, whereas Tween 80 seemed to have a neutral or negative impact on their antimicrobial effectiveness.
Resumo:
Aeromonas are widely distributed in the aquatic environment, and are considered to be emerging organisms that can produce a series of virulence factors. The present study was carried out in a sanitary sewage stabilization pond treatment system, located in Lins, State of Sao Paulo, Brazil. Most probable number was applied for estimation of the genus Aeromonas. Colony isolation was carried out on blood agar ampicillin and confirmed by biochemical characterization. Aeromonas species were isolated in 72.4% of influent samples, and in 55.2 and 48.3% of effluent from anaerobic and facultative lagoons, respectively. Thirteen Aeromonas species were isolated, representing most of the recognized species of these organisms. Even though it was possible to observe a tendency of decrease, total elimination of these organisms from the studied system was not achieved. Understanding of the pathogenic organism`s dynamics in wastewater treatment systems with a reuse potential is especially important because of the risk it represents.
Resumo:
Agitation rate is an important parameter in the operation of Anaerobic Sequencing Biofilm Batch Reactors (ASBBRs), and a proper agitation rate guarantees good mixing, improves mass transfer, and enhances the solubility of the particulate organic matter. Dairy effluents have a high amount of particulate organic matter, and their anaerobic digestion presents inhibitory intermediates (e. g., long-chain fatty acids). The importance of studying agitation in such batch systems is clear. The present study aimed to evaluate how agitation frequency influences the anaerobic treatment of dairy effluents. The ASBBR was fed with wastewater from milk pasteurisation process and cheese manufacture with no whey segregation. The organic matter concentration, measured as chemical oxygen demand (COD), was maintained at approximately 8,000 mg/L. The reactor was operated with four agitation frequencies: 500 rpm, 350 rpm, 200 rpm, and no agitation. In terms of COD removal efficiency, similar results were observed for 500 rpm and 350 rpm (around 90%) and for 200 rpm and no agitation (around 80%). Increasing the system`s agitation thus not only improved the global efficiency of organic matter removal but also influenced volatile acid production and consumption and clearly modified this balance in each experimental condition.
Resumo:
The objective of this work was to compare two anaerobic reactor conflgurations, a hybrid upflow anaerobic sludge blanket (UASBh) reactor and an anaerobic sequencing batch reactor with immobilised biomass (ASBBR) treating dairy effluents. The reactors were fed with effluent from the milk pasteurisation process (effluent 1-E1) and later with effluent from the same process combined with the one from the cheese manufacturing (effluent 2-E2). The ASBBR reactor showed average organic matter removal efficiency of 95.2% for E1 and 93.5% for E2, while the hybrid UASB reactor showed removal efficiencies of 90.3% and 80.1% respectively.
Resumo:
Ethanol extracts of four propolis samples (E1-E4) from Manaus (Brazilian Amazon) were analysed by HPLC/DAD/ESI-MS/MS and GC/EIMS. The major constituents of E2 and E4 were analysed by NMR ((1)H and (13)C) and ESI/MS/MS. The main constituents of E2 and E4 are polyprenylated benzophenones: 7-epi-nemorosone, 7-epi-clusianone (major E4 constituents), xanthochymol and gambogenone (major E2 constituents), making up a chemical profile so far unreported for Brazilian propolis. Aristhophenone, methyl insigninone, 18-ethyloxy-17-hydroxy-17,18-dihydroscrobiculatone B, and derivatives of dimethyl weddellianone A and B, propolones, and a scrobiculatone derivative, were detected as minor constituents. Triterpenoids (beta-amyrins, beta-amyrenone, lupeol and lupenone) were ubiquitous and predominant in El and E3. The extracts E2 and E4 were highly active against the cariogenic bacteria Streptococcus mitis, Streptococcus mutans and Streptococcus salivarius. E2 was more active than E4, probably due to a higher content of 2-epi-nemorosone, while the latter was richer in di-hydroxylated compounds. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Taxonomic characterization was performed on the putative N-2-fixing microbiota associated with the coral species Mussismilia hispida, and with its sympatric species Palythoa caribaeorum, P. variabilis, and Zoanthus solanderi, off the coast of Sao Sebastiao (Sao Paulo State, Brazil). The 95 isolates belonged to the Gammaproteobacteria according to the 16S rDNA gene sequences. In order to identify the isolates unambiguously, pyrH gene sequencing was carried out. The majority of the isolates (n = 76) fell within the Vibrio core group, with the highest gene sequence similarity being towards Vibrio harveyi and Vibrio alginolyticus. Nineteen representative isolates belonging to V. harveyi (n = 7), V. alginolyticus (n = 8), V. campbellii (n = 3), and V parahaemolyticus (n = 1) were capable of growing six successive times in nitrogen-free medium and some of them showed strong nitrogenase activity by means of the acetylene reduction assay (ARA). It was concluded that nitrogen fixation is a common phenotypic trait among Vibrio species of the core group. The fact that different Vibrio species can fix N, might explain why they are so abundant in the mucus of different coral species. (C) 2008 Published by Elsevier GmbH.
Resumo:
Viral and bacterial associations appear to be implicated in the development of periodontal infections. Little information is available describing the periodontopathic agents in root canals with necrotic pulp. In this study, the occurrence and the combinations among herpes simplex virus type 1 (HSV-1) and Dialister pneumosintes, Tannerella forsythia.. and Treponema denticola in patients with chronic periodontitis and necrotic pulp were evaluated. Clinical samples from healthy subjects and patients with periodontal or pulp infections were analyzed using a nested polymerase chain reaction PCR to detect HSV and PCR to detect the 3 periodontal bacteria. The presence of Tannerella forsythia and Treponema denticola was observed in healthy, periodontitis, and necrotic pulp patients. HSV was observed in periodontitis and necrotic pulp patients, and no healthy subject harbored D. pneumosintes or HSV. The occurrence of Tannerella forsythia was not statistically significant in patients with necrotic pulp (P = 0.704). Periodontal bacteria were observed varying from 10.3% to 20.7% in periodontitis and necrotic pulp patients. The presence of Treponema denticola - HSV association was predominant in patients showing necrotic pulp (24.1%); however, HSV alone was observed in one patient with periodontitis and in another patient with necrotic pulp. The presence of double association among bacteria or bacteria - HSV could indicate a role in both periodontitis and necrotic pulp, and Tannerella forsythia - Treponenta denticola - HSV and Tannerella forsythia - D. pneumosintes - Treponema denticola - HSV associations might be important in periodontitis.
Resumo:
A Gram-negative, rod-shaped, non-spore-forming and nitrogen-fixing bacterium, designated ICB 89(T), was isolated from stems of a Brazilian sugar cane variety widely used in organic farming. 16S rRNA gene sequence analysis revealed that strain ICB 89(T) belonged to the genus Stenotrophomonas and was most closely related to Stenotrophomonas maltophilia LMG 958(T), Stenotrophomonas rhizophila LMG 22075(T), Stenotrophomonas nitritireducens L2(T), [Pseudomonas] geniculata ATCC 19374(T), [Pseudomonas] hibiscicola ATCC 19867(T) and [Pseudomonas] beteli ATCC 19861(T). DNA-DNA hybridization together with chemotaxonomic data and biochemical characteristics allowed the differentiation of strain ICB 89(T) from its nearest phylogenetic neighbours. Therefore, strain ICB 89(T) represents a novel species, for which the name Stenotrophomonas pavanii sp. nov. is proposed. The type strain is ICB 89(T) (=CBMAI 564(T) =LMG 25348(T)).
Resumo:
In this study the presence of periodontopathic pathogens in atheromatous plaques removed from coronary arteries of patients with chronic periodontitis and periodontally healthy subjects by PCR was detected. Our results indicate a significant association between the presence of Porphyromonas gingivalis and atheromas, and the periodontal bacteria in oral biofilm may find a way to reach arteries. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The numbers of culturable diazotrophic endophytic bacteria (CDEB) from roots stems and leaves of sugarcane submitted to organic inorganic or no fertilization were compared In order to determine the size of the N(2) fixing populations the Most Probable Number technique (MPN) was used The quantification of diazotrophic bacteria by using the acetylene reduction assay (ARA) was more accurate than observing the bacterial growth in the vials to confirm N(2) fixing capability the detection of gene nifH was performed on a sample of 105 Isolated bacteria The production of extracellular enzymes involved in the penetration of the plants by the bacteria was also studied The results showed that organic fertilization enhances the number of CDEB when compared with conventional fertilization used throughout the growing season The maximum number of bacteria was detected in the roots Roots and stems presented the greatest number of CDEB in the middle of the cropping season and in leaves numbers varied according to the treatment Using two pairs of primers and two different methods the nifH gene was found in 104 of the 105 tested isolates Larger amounts of pectinase were released by isolates from sugarcane treated with conventional fertilizers (66%) whereas larger amounts of cellulase were released by strains isolated from sugarcane treated with organic fertilizers (80%) (C) 2010 Elsevier Masson SAS All rights reserved
Resumo:
Oral pathogens, including periodontopathic bacteria, are thought to be aetiological factors in the development of cardiovascular disease. In this study, the presence of Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum-periodonticum-simiae group, Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens and Tannerella forsythia in atheromatous plaques from coronary arteries was determined by real-time PCR. Forty-four patients displaying cardiovascular disease were submitted to periodontal examination and endarterectomy of coronary arteries. Approximately 60-100 mg atherosclerotic tissue was removed surgically and DNA was obtained. Quantitative detection of periodontopathic bacteria was performed using universal and species-specific TaqMan probe/primer sets. Total bacterial and periodontopathic bacterial DNA were found in 94.9 and 92.3 %, respectively, of the atheromatous plaques from periodontitis patients, and in 80.0 and 20.0%, respectively, of atherosclerotic tissues from periodontally healthy subjects. All periodontal bacteria except for the F. nucleatum-periodonticum-simiae group were detected, and their DNA represented 47.3 % of the total bacterial DNA obtained from periodontitis; patients. Porphyromonas gingivalis, A. actinomycetemcomitans and Prevotella intermedia were detected most often. The presence of two or more periodontal species could be observed in 64.1 % of the samples. In addition, even in samples in which a single periodontal species was detected, additional unidentified microbial DNA could be observed. The significant number of periodontopathic bacterial DNA species in atherosclerotic tissue samples from patients with periodontitis suggests that the presence of these micro-organisms in coronary lesions is not coincidental and that they may in fact contribute to the development of vascular diseases.
Resumo:
Although xylose is a major constituent of lignocellulosic feedstock and the second most abundant sugar in nature, only 22% of 3,152 screened bacterial isolates showed significant growth in xylose in 24 h. Of those 684, only 24% accumulated polyhydroxyalkanoates after 72 h. A mangrove isolate, identified as Bacillus sp. MA3.3, yielded the best results in literature thus far for Gram-positive strains in experiments with glucose and xylose as the sole carbon source. When glucose or xylose were supplied, poly-3-hydroxybutyrate (PHB) contents of cell dry weight were, respectively, 62 and 64%, PHB yield 0.25 and 0.24 g g(-1) and PHB productivity (P(PHB)) 0.10 and 0.06 g l(-1) h(-1). This 40% P(PHB) difference may be related to the theoretical ATP production per 3-hydroxybutyrate (3HB) monomer calculated as 3 mol mol(-1) for xylose, less than half of the ATP/3HB produced from glucose (7 mol mol(-1)). In PHB production using sugar mixtures, all parameters were strongly reduced due to carbon catabolite repression. PHB production using Gram-positive strains is particularly interesting for medical applications because these bacteria do not produce lipopolysaccharide endotoxins which can induce immunogenic reactions. Moreover, the combination of inexpensive substrates and products of more value may lead to the economical sustainability of industrial PHB production.
Resumo:
The biosynthesis of quinolinate, the de novo precursor of nicotinamide adenine dinucleotide (NAD), may be performed by two distinct pathways, namely, the bacterial aspartate (aspartate-to-quinolinate) and the eukaryotic kynurenine (tryptophan-to-quinolinate). Even though the separation into eukaryotic and bacterial routes is long established, recent genomic surveys have challenged this view, because certain bacterial species also carry the genes for the kynurenine pathway. In this work, both quinolinate biosynthetic pathways were investigated in the Bacteria clade and with special attention to Xanthomonadales and Bacteroidetes, from an evolutionary viewpoint. Genomic screening has revealed that a small number of bacterial species possess some of the genes for the kynurenine pathway, which is complete in the genus Xanthomonas and in the order Flavobacteriales, where the aspartate pathway is absent. The opposite pattern (presence of the aspartate pathway and absence of the kynurenine pathway) in close relatives (Xylella ssp. and the order Bacteroidales, respectively) points to the idea of a recent acquisition of the kynurenine pathway through lateral gene transfer in these bacterial groups. In fact, sequence similarity comparison and phylogenetic reconstruction both suggest that at least part of the genes of the kynurenine pathway in Xanthomonas and Flavobacteriales is shared by eukaryotes. These results reinforce the idea of the role that lateral gene transfer plays in the configuration of bacterial genomes, thereby providing alternative metabolic pathways, even with the replacement of primary and essential cell functions, as exemplified by NAD biosynthesis.
Resumo:
Free-living amoebae of the genus Acanthamoeba are widely distributed in soil and water collections, where trophozoites (vegetative, multiplicative stages) feed mainly by phagocytosis and thus control bacterial populations in the environment. Here, we examined the growth, encystment and survival of Acanthamoeba castellanii receiving different bacteria (Escherichia coli, Pseudomonas aeruginosa, Enterobacter cloacae, Bacillus subtilis, Bacillus megaterium, Micrococcus luteus, and Staphylococcus aureus) in nonnutrient saline. All bacteria assayed induced a dose-dependent proliferative response, in most cases maximized with a bacterial dose of 1 x 10(9) mL(-1); except for M. luteus, trophozoites grew better with viable than with heat-killed bacteria. In addition, Acanthamoeba growth was improved by adding bacteria on alternate days. Single-dose experiments indicated a temporal association between the growth of trophozoite and bacterial consumption, and higher consumption of M. luteus, E. coli and P. aeruginosa, bacterial species that allowed the highest trophozoite yields. Long-term Acanthamoeba-bacteria incubation revealed that encystment was significantly delayed by almost all the bacteria assayed (including S. aureus, which elicited a poor growth response) and that the presence of bacteria markedly increased cyst yield; final cyst recovery clearly depended on both the dose and the type of the bacterium given, being much higher with E. coli, M. luteus and P. aeruginosa.