1000 resultados para Alnus undifferentiated
Resumo:
Series, title and imprint also in Russian.
Resumo:
Wet woodlands have been recognised as a priority habitat and have featured in the UK BAP since 1994. Although this has been acknowledged in a number of UK policies and guidelines, there is little information relating to their detailed ecology and management. This research, focusing on lowland Alnus glutinosa woodlands, aimed to address this data paucity through the analysis of species requirements and to develop a methodology to guide appropriate management for this habitat for the benefit of wildlife. To achieve these aims data were collected from 64 lowland Alnus glutinosa woodlands and a review of the literature was undertaken to identify species associated with the target habitat. The groundflora species found to be associated with lowland Alnus glutinosa woodland were assessed in relation to their optimal environmental conditions (Ellenberg indicator values) and survival strategies (Grime CSR-Strategy) to determine the characteristics (Characters of a Habitat; CoaHs) and range of intra-site conditions (Niches of a Habitat; NoaH). The methodologies, using CSR and Ellenberg indicator values in combination, were developed to determine NoaHs and were tested both quantitatively and qualitatively at different lowland Alnus glutinosa sites. The existence of CoaHs and NoaHs in actual sites was verified by detailed quadrat data gathered at three Alnus glutinosa woodlands at Stonebridge Meadows, Warwickshire, UK and analysed using TWINSPAN and DCA ordination. The CoaHs and NoaHs and their component species were confirmed to have the potential to occur in a particular woodland. Following a literature search relating to the management of small wet woodlands within the UK, in conjunction with the current research, broad principles and strategies were identified for the management of lowland Alnus glutinosa woodland. Using the groundflora composition, an innovative procedure is developed and described for identifying the potential variation within a particular site and determining its appropriate management. Case studies were undertaken on distinct woodlands and the methodology proved effective.
Resumo:
Peer reviewed
Resumo:
The World Health Organization (WHO 2003) recognizes 3 endometrial stromal neoplasms: noninvasive endometrial stromal nodule and the 2 invasive neoplasms, endometrial stromal sarcoma (ESS), low grade and undifferentiated endometrial sarcoma (UES). It is important to note that the WHO 2003 does not define moderate atypia (an important differentiating diagnostic criterion for ESS, low grade and UES), nor does it discuss its significance. Moreover, studies on reproducibility and additional prognostic value of other diagnostic features in large are lacking. Using strict definitions, we analyzed the agreement between routine and expert-review necrosis and nuclear atypia in 91 invasive endometrial stromal neoplasias (IESN). The overall 5-year and 10-year recurrence-free survival rate estimates of the 91 IESN patients were 82% and 75%, respectively. Necrosis was well reproducible, and nuclear atypia was reasonably well reproducible. The 10-year recurrence-free survival rates for necrosis absent/inconspicuous versus prominent were 89% and 45% (P<0.001) and those for review-confirmed none/mild, moderate, severe atypia were 90%, 30%, and <20% (P<0.00001). Therefore, cases with moderate/severe atypia should be grouped together. Nuclear atypia and necrosis had independent prognostic values (Cox regression). Once these features were taken into account, no other feature had an independent additional prognostic value, including mitotic count. Using "none/mild atypia, necrosis absent/inconspicuous" as ESS, low grade versus "moderate/severe atypia present or necrosis present" as UES resulted in 68 ESS, low grade and 23 UES cases with disease-specific overall mortality-free survival of 99% versus 48% (P<0.00001, hazard ratio=45.4). When strictly defined microscopic criteria are used, the WHO 2003 diagnoses of ESS, low grade and UES are well reproducible and prognostically strong. © 2012 International Society of Gynecological Pathologists.
Resumo:
The Gulf of Carpentaria is an epicontinental sea (maximum depth 70 m) between Australia and New Guinea, bordered to the east by Torres Strait (currently 12 m deep) and to the west by the Arafura Sill (53 m below present sea level). Throughout the Quaternary, during times of low sea-level, the Gulf was separated from the open waters of the Indian and Pacific Oceans, forming Lake Carpentaria, an isolation basin, perched above contemporaneous sea-level with outlet channels to the Arafura Sea. A preliminary interpretation is presented of the palaeoenvironments recorded in six sediment cores collected by the IMAGES program in the Gulf of Carpentaria. The longest core (approx. 15 m) spans the past 130 ka and includes a record of sea-level/lake-level changes, with particular complexity between 80 and 40 ka when sea-level repeatedly breached and withdrew from Gulf/Lake Carpentaria. Evidence from biotic remains (foraminifers, ostracods, pollen), sedimentology and geochemistry clearly identifies a final marine transgression at about 9.7 ka (radiocarbon years). Before this transgression, Lake Carpentaria was surrounded by grassland, was near full, and may have had a surface area approaching 600 km-300 km and a depth of about 15 m. The earlier rise in sea-level which accompanied the Marine Isotopic Stage 6/5 transgression at about 130 ka is constrained by sedimentological and biotic evidence and dated by optical- and thermoluminescence and amino acid racemisation methods.
Resumo:
The distribution of pollen in marine surface sediments offshore of the west coast of South Africa has been investigated to aid in the interpretation of marine pollen records of onshore vegetation changes. A transect of sediment surface pollen samples retrieved from the Namaqualand mudbelt from just south of the Orange River mouth (29°S) to St Helena Bay (33°S) indicates distinctive pollen spectra reflecting vegetation communities on the adjacent continent. Pollen concentration increases southwards, partly in relation to greater pollen productivity due to higher biomass and density of fynbos vegetation and of sedimentary processes and low pollen concentrations consequent to dilution with silt and clay from the Orange River. The distribution of specific pollen taxa suggests that the Orange River is a major contributor of pollen to the northern mudbelt declining southwards, while the pollen distribution in the central mudbelt is largely attributable to seasonal inputs of pollen from offshore berg winds and local ephemeral Namaqualand rivers. The typical fynbos elements dominate in the southern mudbelt indicating a pollen source mainly in the fynbos vegetation types. These conclusions support a companion analysis of fossil pollen records of two marine sediment cores from the northern and southern mudbelt respectively. This study demonstrates that pollen records from marine sediment cores in the Namaqualand mudbelt have the potential to be a tool to reconstruct palaeovegetation on the adjacent continent. However, to better reconstruct the palaeoclimate of South Africa and fully understand the relations between terrestrial and marine deposits, more marine surface sediments along the western coast of South Africa as well as more terrestrial surface sediments need to be studied.