955 resultados para Algebraic Bethe Ansatz


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comfort and Remus [W.W. Comfort, D. Remus, Abelian torsion groups with a pseudo-compact group topology, Forum Math. 6 (3) (1994) 323-337] characterized algebraically the Abelian torsion groups that admit a pseudocompact group topology using the Ulm-Kaplansky invariants. We show, under a condition weaker than the Generalized Continuum Hypothesis, that an Abelian torsion group (of any cardinality) admits a pseudocompact group topology if and only if it admits a countably compact group topology. Dikranjan and Tkachenko [D. Dikranjan. M. Tkachenko, Algebraic structure of small countably compact Abelian groups, Forum Math. 15 (6) (2003) 811-837], and Dikranjan and Shakhmatov [D. Dikranjan. D. Shakhmatov, Forcing hereditarily separable compact-like group topologies on Abelian groups, Topology Appl. 151 (1-3) (2005) 2-54] showed this equivalence for groups of cardinality not greater than 2(c). We also show, from the existence of a selective ultrafilter, that there are countably compact groups without non-trivial convergent sequences of cardinality kappa(omega), for any infinite cardinal kappa. In particular, it is consistent that for every cardinal kappa there are countably compact groups without non-trivial convergent sequences whose weight lambda has countable cofinality and lambda > kappa. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In [H. Brezis, A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pure Appl. (9) (1983) 73-97.] Brezis and Friedman prove that certain nonlinear parabolic equations, with the delta-measure as initial data, have no solution. However in [J.F. Colombeau, M. Langlais, Generalized solutions of nonlinear parabolic equations with distributions as initial conditions, J. Math. Anal. Appl (1990) 186-196.] Colombeau and Langlais prove that these equations have a unique solution even if the delta-measure is substituted by any Colombeau generalized function of compact support. Here we generalize Colombeau and Langlais` result proving that we may take any generalized function as the initial data. Our approach relies on recent algebraic and topological developments of the theory of Colombeau generalized functions and results from [J. Aragona, Colombeau generalized functions on quasi-regular sets, Publ. Math. Debrecen (2006) 371-399.]. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis is to look for signs of students’ understanding of algebra by studying how they make the transition from arithmetic to algebra. Students in an Upper Secondary class on the Natural Science program and Science and Technology program were given a questionnaire with a number of algebraic problems of different levels of difficulty. Especially important for the study was that students leave comments and explanations of how they solved the problems. According to earlier research, transitions are the most critical steps in problem solving. The Algebraic Cycle is a theoretical tool that can be used to make different phases in problem solving visible. To formulate and communicate how the solution was made may lead to students becoming more aware of their thought processes. This may contribute to students gaining more understanding of the different phases involved in mathematical problem solving, and to students becoming more successful in mathematics in general.The study showed that the students could solve mathematical problems correctly, but that they in just over 50% of the cases, did not give any explanations to their solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a method using an extended logical system for obtaining programs from specifications written in a sublanguage of CASL. These programs are “correct” in the sense that they satisfy their specifications. The technique we use is to extract programs from proofs in formal logic by techniques due to Curry and Howard. The logical calculus, however, is novel because it adds structural rules corresponding to the standard ways of modifying specifications: translating (renaming), taking unions, and hiding signatures. Although programs extracted by the Curry-Howard process can be very cumbersome, we use a number of simplifications that ensure that the programs extracted are in a language close to a standard high-level programming language. We use this to produce an executable refinement of a given specification and we then provide a method for producing a program module that maximally respects the original structure of the specification. Throughout the paper we demonstrate the technique with a simple example.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We suggest the use of a particular Divisia index for measuring welfare losses due to interest rate wedges and in‡ation. Compared to the existing options in the literature: i) when the demands for the monetary assets are known, closed-form solutions for the welfare measures can be obtained at a relatively lower algebraic cost; ii) less demanding integrability conditions allow for the recovery of welfare measures from a larger class of demand systems and; iii) when the demand speci…cations are not known, using an index number entitles the researcher to rank di¤erent vectors of opportunity costs directly from market observations. We use two examples to illustrate the method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho apresentado Numerical Solution of Differential and Differential-Algebraic Equations (NUMDIFF-14), Halle, 7-11 Sep 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We give a thorough account of the various equivalent notions for \sheaf" on a locale, namely the separated and complete presheaves, the local home- omorphisms, and the local sets, and to provide a new approach based on quantale modules whereby we see that sheaves can be identi¯ed with certain Hilbert modules in the sense of Paseka. This formulation provides us with an interesting category that has immediate meaningful relations to those of sheaves, local homeomorphisms and local sets. The concept of B-set (local set over the locale B) present in [3] is seen as a simetric idempotent matrix with entries on B, and a map of B-sets as de¯ned in [8] is shown to be also a matrix satisfying some conditions. This gives us useful tools that permit the algebraic manipulation of B-sets. The main result is to show that the existing notions of \sheaf" on a locale B are also equivalent to a new concept what we call a Hilbert module with an Hilbert base. These modules are the projective modules since they are the image of a free module by a idempotent automorphism On the ¯rst chapter, we recall some well known results about partially ordered sets and lattices. On chapter two we introduce the category of Sup-lattices, and the cate- gory of locales, Loc. We describe the adjunction between this category and the category Top of topological spaces whose restriction to spacial locales give us a duality between this category and the category of sober spaces. We ¯nish this chapter with the de¯nitions of module over a quantale and Hilbert Module. Chapter three concerns with various equivalent notions namely: sheaves of sets, local homeomorphisms and local sets (projection matrices with entries on a locale). We ¯nish giving a direct algebraic proof that each local set is isomorphic to a complete local set, whose rows correspond to the singletons. On chapter four we de¯ne B-locale, study open maps and local homeo- morphims. The main new result is on the ¯fth chapter where we de¯ne the Hilbert modules and Hilbert modules with an Hilbert and show this latter concept is equivalent to the previous notions of sheaf over a locale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to analyze the historical and epistemological development of the Group concept related to the theory on advanced mathematical thinking proposed by Dreyfus (1991). Thus it presents pedagogical resources that enable learning and teaching of algebraic structures as well as propose greater meaning of this concept in mathematical graduation programs. This study also proposes an answer to the following question: in what way a teaching approach that is centered in the Theory of Numbers and Theory of Equations is a model for the teaching of the concept of Group? To answer this question a historical reconstruction of the development of this concept is done on relating Lagrange to Cayley. This is done considering Foucault s (2007) knowledge archeology proposal theoretically reinforced by Dreyfus (1991). An exploratory research was performed in Mathematic graduation courses in Universidade Federal do Pará (UFPA) and Universidade Federal do Rio Grande do Norte (UFRN). The research aimed to evaluate the formation of concept images of the students in two algebra courses based on a traditional teaching model. Another experience was realized in algebra at UFPA and it involved historical components (MENDES, 2001a; 2001b; 2006b), the development of multiple representations (DREYFUS, 1991) as well as the formation of concept images (VINNER, 1991). The efficiency of this approach related to the extent of learning was evaluated, aiming to acknowledge the conceptual image established in student s minds. At the end, a classification based on Dreyfus (1991) was done relating the historical periods of the historical and epistemological development of group concepts in the process of representation, generalization, synthesis, and abstraction, proposed here for the teaching of algebra in Mathematics graduation course

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Mathematics literature some records highlight the difficulties encountered in the teaching-learning process of integers. In the past, and for a long time, many mathematicians have experienced and overcome such difficulties, which become epistemological obstacles imposed on the students and teachers nowadays. The present work comprises the results of a research conducted in the city of Natal, Brazil, in the first half of 2010, at a state school and at a federal university. It involved a total of 45 students: 20 middle high, 9 high school and 16 university students. The central aim of this study was to identify, on the one hand, which approach used for the justification of the multiplication between integers is better understood by the students and, on the other hand, the elements present in the justifications which contribute to surmount the epistemological obstacles in the processes of teaching and learning of integers. To that end, we tried to detect to which extent the epistemological obstacles faced by the students in the learning of integers get closer to the difficulties experienced by mathematicians throughout human history. Given the nature of our object of study, we have based the theoretical foundation of our research on works related to the daily life of Mathematics teaching, as well as on theorists who analyze the process of knowledge building. We conceived two research tools with the purpose of apprehending the following information about our subjects: school life; the diagnosis on the knowledge of integers and their operations, particularly the multiplication of two negative integers; the understanding of four different justifications, as elaborated by mathematicians, for the rule of signs in multiplication. Regarding the types of approach used to explain the rule of signs arithmetic, geometric, algebraic and axiomatic , we have identified in the fieldwork that, when multiplying two negative numbers, the students could better understand the arithmetic approach. Our findings indicate that the approach of the rule of signs which is considered by the majority of students to be the easiest one can be used to help understand the notion of unification of the number line, an obstacle widely known nowadays in the process of teaching-learning

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present work was develop a study about the writing and the algebraic manipulation of symbolical expressions for perimeter and area of some convex polygons, approaching the properties of the operations and equality, extending to the obtaining of the formulas of length and area of the circle, this one starting on the formula of the perimeter and area of the regular hexagon. To do so, a module with teaching activities was elaborated based on constructive teaching. The study consisted of a methodological intervention, done by the researcher, and had as subjects students of the 8th grade of the State School Desembargador Floriano Cavalcanti, located on the city of Natal, Rio Grande do Norte. The methodological intervention was done in three stages: applying of a initial diagnostic evaluation, developing of the teaching module, and applying of the final evaluation based on the Mathematics teaching using Constructivist references. The data collected in the evaluations was presented as descriptive statistics. The results of the final diagnostic evaluation were analyzed in the qualitative point of view, using the criteria established by Richard Skemp s second theory about the comprehension of mathematical concepts. The general results about the data from the evaluations and the applying of the teaching module showed a qualitative difference in the learning of the students who participated of the intervention

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work present a interval approach to deal with images with that contain uncertainties, as well, as treating these uncertainties through morphologic operations. Had been presented two intervals models. For the first, is introduced an algebraic space with three values, that was constructed based in the tri-valorada logic of Lukasiewiecz. With this algebraic structure, the theory of the interval binary images, that extends the classic binary model with the inclusion of the uncertainty information, was introduced. The same one can be applied to represent certain binary images with uncertainty in pixels, that it was originated, for example, during the process of the acquisition of the image. The lattice structure of these images, allow the definition of the morphologic operators, where the uncertainties are treated locally. The second model, extend the classic model to the images in gray levels, where the functions that represent these images are mapping in a finite set of interval values. The algebraic structure belong the complete lattices class, what also it allow the definition of the elementary operators of the mathematical morphology, dilation and erosion for this images. Thus, it is established a interval theory applied to the mathematical morphology to deal with problems of uncertainties in images

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we use Interval Mathematics to establish interval counterparts for the main tools used in digital signal processing. More specifically, the approach developed here is oriented to signals, systems, sampling, quantization, coding and Fourier transforms. A detailed study for some interval arithmetics which handle with complex numbers is provided; they are: complex interval arithmetic (or rectangular), circular complex arithmetic, and interval arithmetic for polar sectors. This lead us to investigate some properties that are relevant for the development of a theory of interval digital signal processing. It is shown that the sets IR and R(C) endowed with any correct arithmetic is not an algebraic field, meaning that those sets do not behave like real and complex numbers. An alternative to the notion of interval complex width is also provided and the Kulisch- Miranker order is used in order to write complex numbers in the interval form enabling operations on endpoints. The use of interval signals and systems is possible thanks to the representation of complex values into floating point systems. That is, if a number x 2 R is not representable in a floating point system F then it is mapped to an interval [x;x], such that x is the largest number in F which is smaller than x and x is the smallest one in F which is greater than x. This interval representation is the starting point for definitions like interval signals and systems which take real or complex values. It provides the extension for notions like: causality, stability, time invariance, homogeneity, additivity and linearity to interval systems. The process of quantization is extended to its interval counterpart. Thereafter the interval versions for: quantization levels, quantization error and encoded signal are provided. It is shown that the interval levels of quantization represent complex quantization levels and the classical quantization error ranges over the interval quantization error. An estimation for the interval quantization error and an interval version for Z-transform (and hence Fourier transform) is provided. Finally, the results of an Matlab implementation is given

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiphase flows in ducts can adopt several morphologies depending on the mass fluxes and the fluids properties. Annular flow is one of the most frequently encountered flow patterns in industrial applications. For gas liquid systems, it consists of a liquid film flowing adjacent to the wall and a gas core flowing in the center of the duct. This work presents a numerical study of this flow pattern in gas liquid systems in vertical ducts. For this, a solution algorithm was developed and implemented in FORTRAN 90 to numerically solve the governing transport equations. The mass and momentum conservation equations are solved simultaneously from the wall to the center of the duct, using the Finite Volumes Technique. Momentum conservation in the gas liquid interface is enforced using an equivalent effective viscosity, which also allows for the solution of both velocity fields in a single system of equations. In this way, the velocity distributions across the gas core and the liquid film are obtained iteratively, together with the global pressure gradient and the liquid film thickness. Convergence criteria are based upon satisfaction of mass balance within the liquid film and the gas core. For system closure, two different approaches are presented for the calculation of the radial turbulent viscosity distribution within the liquid film and the gas core. The first one combines a k- Ɛ one-equation model and a low Reynolds k-Ɛ model. The second one uses a low Reynolds k- Ɛ model to compute the eddy viscosity profile from the center of the duct right to the wall. Appropriate interfacial values for k e Ɛ are proposed, based on concepts and ideas previously used, with success, in stratified gas liquid flow. The proposed approaches are compared with an algebraic model found in the literature, specifically devised for annular gas liquid flow, using available experimental results. This also serves as a validation of the solution algorithm