994 resultados para Algebraic Approach
Resumo:
Organizational learning has been studied as a key factor in firm performance and internationalization. Moving beyond the past emphasis on market learning, we develop a more complete explanation of learning, its relationship to innovation, and their joint effect on early internationalization. We theorize that, driven by the founders’ international vision, early internationalizing firms employ a dual subsystem of dynamic capabilities: a market subsystem consisting of market-focused learning capability and marketing capability, and a socio-technical subsystem comprised of network learning capability and internally focused learning capability. We argue that innovation mediates the proposed relationship between the dynamic capability structure and early internationalization. We conduct case studies to develop the conceptual framework and test it in a field survey of early internationalizing firms from Australia and the United States. Our findings indicate a complex interplay of capabilities driving innovation and early internationalization. We provide theoretical and practical implications and offer insights for future research.
Resumo:
Studies on quantitative fit analysis of precontoured fracture fixation plates emerged within the last few years and therefore, there is a wide research gap in this area. Quantitative fit assessment facilitates the measure of the gap between a fracture fixation plate and the underlying bone, and specifies the required plate fit criteria. For clinically meaningful fit assessment outcome, it is necessary to establish the appropriate criteria and parameter. The present paper studies this subject and recommends using multiple fit criteria and the maximum distance between the plate and underlying bone as fit parameter for clinically relevant outcome. We also propose the development of a software tool for automatic plate positioning and fit assessment for the purpose of implant design validation and optimization in an effort to provide better fitting implant that can assist proper fracture healing. The fundamental specifications of the software are discussed.
Resumo:
Despite decades of attempts to embed sustainability within higher education, literature clearly suggests that highly regulated disciplines such as engineering have been relatively slow to incorporate sustainability knowledge and skill areas, and are generally poorly prepared to do so. With current efforts, it is plausible that sustainability could take another two decades to be embedded within the curriculum. Within this context, this paper presents a whole system approach to implement systematic, intentional and timely curriculum renewal that is responsive to emerging challenges and opportunities, encompassing curriculum and organizational change. The paper begins by considering the evolution of curriculum renewal processes, documenting a number of whole system considerations that have been empirically distilled from literature, case studies, pilot trials, and a series of workshops with built environment educators from around the world over the last decade. The paper outlines a whole-of-institution curriculum renewal approach to embedding sustainability knowledge and skills within the DNA of the institutional offerings. The paper concludes with a discussion of research and practice implications for the field of education research, within and beyond higher education.
Resumo:
We study the multicast stream authentication problem when an opponent can drop, reorder and introduce data packets into the communication channel. In such a model, packet overhead and computing efficiency are two parameters to be taken into account when designing a multicast stream protocol. In this paper, we propose to use two families of erasure codes to deal with this problem, namely, rateless codes and maximum distance separable codes. Our constructions will have the following advantages. First, our packet overhead will be small. Second, the number of signature verifications to be performed at the receiver is O(1). Third, every receiver will be able to recover all the original data packets emitted by the sender despite losses and injection occurred during the transmission of information.
Resumo:
Whole System Design is increasingly being seen as one of the most cost effective ways to both increase the productivity and reduce the negative environmental impacts of an engineered system. A focus on design is critical, as the output from this stage of the project locks-in most of the economic and environmental performance of the designed system throughout its life, which can span from a few years to many decades. Indeed, it is now widely acknowledged that all designers – particularly engineers, architects and industrial designers – need to be able to understand and implement a whole system design approach. This book provides a clear design methodology, based on leading efforts in the field, and is supported by worked examples that demonstrate how advances in energy, materials and water productivity can be achieved through applying an integrated approach to sustainable engineering. Chapters 1–5 outline the approach and explain how it can be implemented to enhance the established Systems Engineering framework. Chapters 6–10 demonstrate, through detailed worked examples, the application of the approach to industrial pumping systems, passenger vehicles, electronics and computer systems, temperature control of buildings, and domestic water systems.
Resumo:
Access to clean water is essential for human life and a critical issue facing much of modern society, especially as a result of the 21st Century triad of challenges – population growth, resource scarcity and pollution – which contribute to the rising complexity of providing adequate access to this essential resource for large parts of society. As such, there is now an increasing need for innovative solutions to source, treat and distribute water to cities across the globe. This position paper explores biomimicry – emulating natural form, function, process and systems – as an alternative and sustainable design approach to traditional water infrastructure systems. The key barriers to innovations such as biomimicry are summarised, indicating that regulatory and economic grounds are some of the major hindrances to integrating alternative design approaches in the water sector in developed countries. This paper examines some of the benefits of moving past these barriers to develop sustainable, efficient and resilient solutions that provide adequate access to water in the face of contemporary challenges.
Resumo:
Efforts to reduce carbon emissions in the buildings sector have been focused on encouraging green design, construction and building operation; however, the business case is not very compelling if considering the energy cost savings alone. In recent years green building has been driven by a sense that it will improve the productivity of occupants,i something with much greater economic returns than energy savings. Reducing energy demand in green commercial buildings in a way that encourages greater productivity is not yet well understood as it involves a set of complex and interdependent factors. This paper outlines an investigation into these factors and focuses on better understanding the performance of and interaction between: design elements, internal environmental quality, occupant experience, tenant/leasing agreements, and building regulation and management. In doing so the paper presents a framework for improving energy efficiency in existing commercial buildings by considering a range of interconnected and synergistic elements.
Resumo:
An alternative learning approach for destructive testing of structural specimens in civil engineering is explored by using a remote laboratory experimentation method. The remote laboratory approach focuses on overcoming the constraints in the hands-on experimentation without compromising the understanding of the students on the concepts and mechanics of reinforced concrete structures. The goal of this study is to evaluate whether or not the remote laboratory experimentation approach can become a standard in civil engineering teaching. The teaching activity using remote-laboratory experimentation is presented here and the outcomes of this activity are outlined. The experience and feedback gathered from this study are used to improve the remote-laboratory experimentation approach in future years to other aspects of civil engineering where destructive testing is essential.
Resumo:
A significant reduction in global greenhouse gas (GHG) emissions is a priority, and the preservation of existing building stock presents a significant opportunity to reduce the carbon footprint of our built environment. Within this ‘wicked’ problem context, and moving beyond the ad hoc and incremental performance improvements that have been made to date, collaborative and multidisciplinary efforts are required to find rapid and transformational solutions. Design has emerged as a strategic and redirective practice, and lessons can therefore be learned about transformation and potentially applied in the built environment. The purpose of this paper is to discuss a pragmatic and novel research approach for undertaking such applied design driven research. This paper begins with a discussion of key contributions from design science (rational) and action research (reflective) philosophies in creating an emerging methodological ‘hybrid design approach’. This research approach is then discussed in relation to its application to specific research exploring the processes, methods and lessons from design in heritage building retrofit projects. Drawing on both industry and academic knowledge to ensure relevance and rigour, it is anticipated that the hybrid design approach will be useful for others tackling such complex wicked problems that require context-specific solutions.
Resumo:
This paper presents the Mossman Mill District Practices Framework. It was developed in the Wet Tropics region within the Great Barrier Reef in north-eastern Australia to describe the environmental benefits of agricultural management practices for the sugar cane industry. The framework translates complex, unclear and overlapping environmental plans, policy and legal arrangements into a simple framework of management practices that landholders can use to improve their management actions. Practices range from those that are old or outdated through to aspirational practices that have the potential to achieve desired resource condition targets. The framework has been applied by stakeholders at multiple scales to better coordinate and integrate a range of policy arrangements to improve natural resource management. It has been used to structure monitoring and evaluation in order to underpin a more adaptive approach to planning at mill district and property scale. Potentially, the framework and approach can be applied across fields of planning where adaptive management is needed. It has the potential to overcome many of the criticisms of property-scale and regional Natural Resource Management.
Resumo:
Globally, cities face a convergence of complex and rapidly evolving challenges, including climate change, resource shortages, population growth and urbanization, and financial pressures. Biophilic urbanism is an emerging design principle capable of considering the multidimensional and interdependent complexities of urban systems and infrastructure, which through the use of natural design features, can meet society’s inherent need for contact with nature, and assist efforts to respond to these growing challenges. Considering the imperative for addressing these challenges, this paper proposes that significant lessons can be learned from existing examples of biophilic urbanism, avoiding ‘re-invention of the wheel’ and facilitating accelerated innovation in other areas. Vauban is a 38-hectare brownfield development located 3 kilometers from the centre of Germany’s ‘ecological capital’ of Freiburg city. It was developed using an innovative process with strong community participation and reinterpreted developer roles to produce an example of integrated sustainability. Innovation in transport, energy, housing, development and water treatment has enabled a relatively high-density, mixed-use development that integrates a considerable amount of nature. This paper discusses Vauban in light of research undertaken over the last two years through the Sustainable Built Environment National Research Centre in Australia, to investigate emerging elements of ‘biophilic urbanism’ (nature-loving cities), and their potential to be mainstreamed within urban environments. The paper considers the interplay between the policies, community dynamics and innovations in Vauban, within the context of the culture, history and practice of sustainability in Germany, and how these have enabled nature to be integrated into the urban environment of Vauban while achieving other desirable goals for urban areas. It highlights potential applications from Vauban for Australian cities.
Resumo:
Trivium is a stream cipher candidate of the eStream project. It has successfully moved into phase three of the selection process under the hardware category. No attacks faster than the exhaustive search have so far been reported on Trivium. Bivium-A and Bivium-B are simplified versions of Trivium that are built on the same design principles but with two registers. The simplified design is useful in investigating Trivium type ciphers with a reduced complexity and provides insight into effective attacks which could be extended to Trivium. This paper focuses on an algebraic analysis which uses the boolean satisfiability problem in propositional logic. For reduced variants of the cipher, this analysis recovers the internal state with a minimal amount of keystream observations.
Resumo:
This paper presents a robust place recognition algorithm for mobile robots that can be used for planning and navigation tasks. The proposed framework combines nonlinear dimensionality reduction, nonlinear regression under noise, and Bayesian learning to create consistent probabilistic representations of places from images. These generative models are incrementally learnt from very small training sets and used for multi-class place recognition. Recognition can be performed in near real-time and accounts for complexity such as changes in illumination, occlusions, blurring and moving objects. The algorithm was tested with a mobile robot in indoor and outdoor environments with sequences of 1579 and 3820 images, respectively. This framework has several potential applications such as map building, autonomous navigation, search-rescue tasks and context recognition.
Resumo:
Planning techniques for large scale earthworks have been considered in this article. To improve these activities a “block theoretic” approach was developed that provides an integrated solution consisting of an allocation of cuts to fills and a sequence of cuts and fills over time. It considers the constantly changing terrain by computing haulage routes dynamically. Consequently more realistic haulage costs are used in the decision making process. A digraph is utilised to describe the terrain surface which has been partitioned into uniform grids. It reflects the true state of the terrain, and is altered after each cut and fill. A shortest path algorithm is successively applied to calculate the cost of each haul, and these costs are summed over the entire sequence, to provide a total cost of haulage. To solve this integrated optimisation problem a variety of solution techniques were applied, including constructive algorithms, meta-heuristics and parallel programming. The extensive numerical investigations have successfully shown the applicability of our approach to real sized earthwork problems.
Resumo:
Sustainability is a key driver for decisions in the management and future development of organisations and industries. However, quantifying and comparing sustainability across the triple bottom line (TBL) of economy, environment and social impact, has been problematic. There is a need for a tool which can measure the complex interactions within and between the environmental, economic and social systems which affect the sustainability of an industry in a transparent, consistent and comparable way. The authors acknowledge that there are currently numerous ways in which sustainability is measured and multiple methodologies in how these measurement tools were designed. The purpose of this book is to showcase how Bayesian network modelling can be used to identify and measure environmental, economic and social sustainability variables and to understand their impact on and interaction with each other. This book introduces the Sustainability Scorecard, and describes it through a case study on sustainability of the Australian dairy industry. This study was conducted in collaboration with the Australian dairy industry.