883 resultados para Air quality management.
Resumo:
This thesis contains three subject areas concerning particulate matter in urban area air quality: 1) Analysis of the measured concentrations of particulate matter mass concentrations in the Helsinki Metropolitan Area (HMA) in different locations in relation to traffic sources, and at different times of year and day. 2) The evolution of traffic exhaust originated particulate matter number concentrations and sizes in local street scale are studied by a combination of a dispersion model and an aerosol process model. 3) Some situations of high particulate matter concentrations are analysed with regard to their meteorological origins, especially temperature inversion situations, in the HMA and three other European cities. The prediction of the occurrence of meteorological conditions conducive to elevated particulate matter concentrations in the studied cities is examined. The performance of current numerical weather forecasting models in the case of air pollution episode situations is considered. The study of the ambient measurements revealed clear diurnal variation of the PM10 concentrations in the HMA measurement sites, irrespective of the year and the season of the year. The diurnal variation of local vehicular traffic flows seemed to have no substantial correlation with the PM2.5 concentrations, indicating that the PM10 concentrations were originated mainly from local vehicular traffic (direct emissions and suspension), while the PM2.5 concentrations were mostly of regionally and long-range transported origin. The modelling study of traffic exhaust dispersion and transformation showed that the number concentrations of particles originating from street traffic exhaust undergo a substantial change during the first tens of seconds after being emitted from the vehicle tailpipe. The dilution process was shown to dominate total number concentrations. Minimal effect of both condensation and coagulation was seen in the Aitken mode number concentrations. The included air pollution episodes were chosen on the basis of occurrence in either winter or spring, and having at least partly local origin. In the HMA, air pollution episodes were shown to be linked to predominantly stable atmospheric conditions with high atmospheric pressure and low wind speeds in conjunction with relatively low ambient temperatures. For the other European cities studied, the best meteorological predictors for the elevated concentrations of PM10 were shown to be temporal (hourly) evolutions of temperature inversions, stable atmospheric stability and in some cases, wind speed. Concerning the weather prediction during particulate matter related air pollution episodes, the use of the studied models were found to overpredict pollutant dispersion, leading to underprediction of pollutant concentration levels.
Resumo:
The smoke and fumes of the city: Air protection in Helsinki from 1945 to 1982 This dissertation examines air pollution and air protection in post-war Helsinki. The period studied ends in 1982 when the Air Protection Act entered into force, thus institutionalising air protection in Finland as a socially governed environmental matter. The dissertation is based on the research traditions of environmental politics and urban environmental history. The development of air protection is approached from the perspectives of politicisation and institutionalisation. The dissertation also investigates how air pollution grew into a social issue and presents various discursive ways of analysing air pollution and protection. The primary research material consists of municipal documents and newspapers, while supplementary material includes journal articles and interviews. The event history of air protection is described through an analysis of the material, including source criticism. The social ways of dealing with air pollution and the emergence of air protection are analysed in the light of case-specific air quality disputes from both factual and discursive perspectives. This approach enables the contextualisation of the development of air protection as part of the local history of post-war Helsinki. The dissertation presents the major sources of air pollution in Helsinki and describes the deterioration of air quality in a society which emphasised the primacy of economic prosperity. The air issue emerged during the 1950s in neighbourhood disputes and was exacerbated into a larger problem in the late 1960s. Concurrent to the formation of the field of environmental protection in Finland, an air protection organisation was established in the 1970s in Helsinki. As a result, air protection became a regular part of municipal government. Air protection in Helsinki developed from small-scale policies focused on individual cases into a large, institutionalised air protection system managed by experts. The dissertation research material gave rise to the following major research themes: the economic dimension of the air issue, the role of science in the formation of the environmental problem, and the establishment of norms for acceptable air quality and reasonable limits to air pollution in the urban environment. The paper also discusses the inequitable distribution of the negative effects of air pollution between the residents of different districts. The dissertation concludes that air protection in Helsinki became a local success story although it was long marred by inefficiency and partial failure.
Resumo:
The nutritional quality of the product as well as other quality attributes like microbiological and sensory quality are essential factors in baby food industry, and therefore different alternative sterilizing methods for conventional heating processes are of great interest in this food sector. This report gives an overview on different sterilization techniques for baby food. The report is a part of the work done in work package 3 ”QACCP Analysis Processing: Quality – driven distribution and processing chain analysis“ in the Core Organic ERANET project called Quality analysis of critical control points within the whole food chain and their impact on food quality, safety and health (QACCP). The overall objective of the project is to optimise organic production and processing in order to improve food safety as well as nutritional quality and increase health promoting aspects in consumer products. The approach will be a chain analysis approach which addresses the link between farm and fork and backwards from fork to farm. The objective is to improve product related quality management in farming (towards testing food authenticity) and processing (towards food authenticity and sustainable processes. The articles in this volume do not necessarily reflect the Core Organic ERANET’s views and in no way anticipate the Core Organic ERANET’s future policy in this area. The contents of the articles in this volume are the sole responsibility of the authors. The information contained here in, including any expression of opinion and any projection or forecast, has been obtained from sources believed by the authors to be reliable but is not guaranteed as to accuracy or completeness. The information is supplied without obligation and on the understanding that any person who acts upon it or otherwise changes his/her position in reliance thereon does so entirely at his/her own risk. The writers gratefully acknowledge the financial support from the Core Organic Funding Body: Ministry of Agriculture and Forestry, Finland, Swiss Federal Office for Agriculture, Switzerland and Federal Ministry of Consumer Protection, Food and Agriculture, Germany.
Resumo:
This report presents a new theory of internal marketing. The thesis has developed as a case study in retrospective action research. This began with the personal involvement of the author in an action research project for customer service improvement at a large Australian retail bank. In other words, much of the theory generating ‘research’ took place after the original project ‘action’ had wound down. The key theoretical proposition is that internal marketing is a relationship development strategy for the purpose of knowledge renewal. In the banking case, exchanges of value between employee participants emerged as the basis for relationship development, with synergistic benefits for customers, employees and the bank. Relationship development turned out to be the mediating variable between the learning activity of employee participants at the project level and success in knowledge renewal at the organisational level. Relationship development was also a pivotal factor in the motivation and customer consciousness of employees. The conclusion reached is that the strength of relationship-mediated internal marketing is in combining a market focused commitment and employee freedom in project work to achieve knowledge renewal. The forgotten truth is that organisational knowledge can be renewed through dialogue and learning, through being trustworthy, and by gaining the trust of employees in return.
Resumo:
Aerosol particles deteriorate air quality, atmospheric visibility and our health. They affect the Earth s climate by absorbing and scattering sunlight, forming clouds, and also via several feed-back mechanisms. The net effect on the radiative balance is negative, i.e. cooling, which means that particles counteract the effect of greenhouse gases. However, particles are one of the poorly known pieces in the climate puzzle. Some of the airborne particles are natural, some anthropogenic; some enter the atmosphere in particle form, while others form by gas-to-particle conversion. Unless the sources and dynamical processes shaping the particle population are quantified, they cannot be incorporated into climate models. The molecular level understanding of new particle formation is still inadequate, mainly due to the lack of suitable measurement techniques to detect the smallest particles and their precursors. This thesis has contributed to our ability to measure newly formed particles. Three new condensation particle counter applications for measuring the concentration of nano-particles were developed. The suitability of the methods for detecting both charged and electrically neutral particles and molecular clusters as small as 1 nm in diameter was thoroughly tested both in laboratory and field conditions. It was shown that condensation particle counting has reached the size scale of individual molecules, and besides measuring the concentration they can be used for getting size information. In addition to atmospheric research, the particle counters could have various applications in other fields, especially in nanotechnology. Using the new instruments, the first continuous time series of neutral sub-3 nm particle concentrations were measured at two field sites, which represent two different kinds of environments: the boreal forest and the Atlantic coastline, both of which are known to be hot-spots for new particle formation. The contribution of ions to the total concentrations in this size range was estimated, and it could be concluded that the fraction of ions was usually minor, especially in boreal forest conditions. Since the ionization rate is connected to the amount of cosmic rays entering the atmosphere, the relative contribution of neutral to charged nucleation mechanisms extends beyond academic interest, and links the research directly to current climate debate.
Resumo:
Floating in the air that surrounds us is a number of small particles, invisible to the human eye. The mixture of air and particles, liquid or solid, is called an aerosol. Aerosols have significant effects on air quality, visibility and health, and on the Earth's climate. Their effect on the Earth's climate is the least understood of climatically relevant effects. They can scatter the incoming radiation from the Sun, or they can act as seeds onto which cloud droplets are formed. Aerosol particles are created directly, by human activity or natural reasons such as breaking ocean waves or sandstorms. They can also be created indirectly as vapors or very small particles are emitted into the atmosphere and they combine to form small particles that later grow to reach climatically or health relevant sizes. The mechanisms through which those particles are formed is still under scientific discussion, even though this knowledge is crucial to make air quality or climate predictions, or to understand how aerosols will influence and will be influenced by the climate's feedback loops. One of the proposed mechanisms responsible for new particle formation is ion-induced nucleation. This mechanism is based on the idea that newly formed particles were ultimately formed around an electric charge. The amount of available charges in the atmosphere varies depending on radon concentrations in the soil and in the air, as well as incoming ionizing radiation from outer space. In this thesis, ion-induced nucleation is investigated through long-term measurements in two different environments: in the background site of Hyytiälä and in the urban site that is Helsinki. The main conclusion of this thesis is that ion-induced nucleation generally plays a minor role in new particle formation. The fraction of particles formed varies from day to day and from place to place. The relative importance of ion-induced nucleation, i.e. the fraction of particles formed through ion-induced nucleation, is bigger in cleaner areas where the absolute number of particles formed is smaller. Moreover, ion-induced nucleation contributes to a bigger fraction of particles on warmer days, when the sulfuric acid and water vapor saturation ratios are lower. This analysis will help to understand the feedbacks associated with climate change.
Resumo:
Stochastic hybrid systems arise in numerous applications of systems with multiple models; e.g., air traffc management, flexible manufacturing systems, fault tolerant control systems etc. In a typical hybrid system, the state space is hybrid in the sense that some components take values in a Euclidean space, while some other components are discrete. In this paper we propose two stochastic hybrid models, both of which permit diffusion and hybrid jump. Such models are essential for studying air traffic management in a stochastic framework.
Resumo:
Streamflow forecasts at daily time scale are necessary for effective management of water resources systems. Typical applications include flood control, water quality management, water supply to multiple stakeholders, hydropower and irrigation systems. Conventionally physically based conceptual models and data-driven models are used for forecasting streamflows. Conceptual models require detailed understanding of physical processes governing the system being modeled. Major constraints in developing effective conceptual models are sparse hydrometric gauge network and short historical records that limit our understanding of physical processes. On the other hand, data-driven models rely solely on previous hydrological and meteorological data without directly taking into account the underlying physical processes. Among various data driven models Auto Regressive Integrated Moving Average (ARIMA), Artificial Neural Networks (ANNs) are most widely used techniques. The present study assesses performance of ARIMA and ANNs methods in arriving at one-to seven-day ahead forecast of daily streamflows at Basantpur streamgauge site that is situated at upstream of Hirakud Dam in Mahanadi river basin, India. The ANNs considered include Feed-Forward back propagation Neural Network (FFNN) and Radial Basis Neural Network (RBNN). Daily streamflow forecasts at Basantpur site find use in management of water from Hirakud reservoir. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
Aerosol loading over the South Asian region has the potential to affect the monsoon rainfall, Himalayan glaciers and regional air-quality, with implications for the billions in this region. While field campaigns and network observations provide primary data, they tend to be location/season specific. Numerical models are useful to regionalize such location-specific data. Studies have shown that numerical models underestimate the aerosol scenario over the Indian region, mainly due to shortcomings related to meteorology and the emission inventories used. In this context, we have evaluated the performance of two such chemistry-transport models: WRF-Chem and SPRINTARS over an India-centric domain. The models differ in many aspects including physical domain, horizontal resolution, meteorological forcing and so on etc. Despite these differences, both the models simulated similar spatial patterns of Black Carbon (BC) mass concentration, (with a spatial correlation of 0.9 with each other), and a reasonable estimates of its concentration, though both of them under-estimated vis-a-vis the observations. While the emissions are lower (higher) in SPRINTARS (WRF-Chem), overestimation of wind parameters in WRF-Chem caused the concentration to be similar in both models. Additionally, we quantified the under-estimations of anthropogenic BC emissions in the inventories used these two models and three other widely used emission inventories. Our analysis indicates that all these emission inventories underestimate the emissions of BC over India by a factor that ranges from 1.5 to 2.9. We have also studied the model simulations of aerosol optical depth over the Indian region. The models differ significantly in simulations of AOD, with WRF-Chem having a better agreement with satellite observations of AOD as far as the spatial pattern is concerned. It is important to note that in addition to BC, dust can also contribute significantly to AOD. The models differ in simulations of the spatial pattern of mineral dust over the Indian region. We find that both meteorological forcing and emission formulation contribute to these differences. Since AOD is column integrated parameter, description of vertical profiles in both models, especially since elevated aerosol layers are often observed over Indian region, could be also a contributing factor. Additionally, differences in the prescription of the optical properties of BC between the models appear to affect the AOD simulations. We also compared simulation of sea-salt concentration in the two models and found that WRF-Chem underestimated its concentration vis-a-vis SPRINTARS. The differences in near-surface oceanic wind speeds appear to be the main source of this difference. In-spite of these differences, we note that there are similarities in their simulation of spatial patterns of various aerosol species (with each other and with observations) and hence models could be valuable tools for aerosol-related studies over the Indian region. Better estimation of emission inventories could improve aerosol-related simulations. (C) 2015 Elsevier Ltd. All rights reserved.