997 resultados para ATOMIZATION ENERGIES
Resumo:
We report the synthesis of high quality vanadium dioxide (VO2) thin films by a novel spray pyrolysis technique, namely ultrasonic nebulized spray pyrolysis of aqueous combustion mixture (UNSPACM). This simple and cost effective two step process involves synthesis of a V2O5 film on an LaAlO3 substrate followed by a controlled reduction to form single phase VO2. The formation of M1 phase (p21/c) is confirmed by Raman spectroscopic studies. A thermally activated metal-insulator transition (MIT) was observed at 61 degrees C, where the resistivity changes by four orders of magnitude. Activation energies for the low conduction phase and the high conduction phase were obtained from temperature variable resistance measurements. The infrared spectra also show a dramatic change in reflectance from 13% to over 90% in the wavelength range of 7-15 mu m. This indicates the suitability of the films for optical switching applications at infrared frequencies.
Resumo:
We employed in situ pulsed laser deposition (PLD) and angle-resolved photoemission spectroscopy (ARPES) to investigate the mechanism of the metal-insulator transition (MIT) in NdNiO3 (NNO) thin films, grown on NdGaO3(110) and LaAlO3(100) substrates. In the metallic phase, we observe three-dimensional hole and electron Fermi surface (FS) pockets formed from strongly renormalized bands with well-defined quasiparticles. Upon cooling across the MIT in NNO/NGO sample, the quasiparticles lose coherence via a spectral weight transfer from near the Fermi level to localized states forming at higher binding energies. In the case of NNO/LAO, the bands are apparently shifted upward with an additional holelike pocket forming at the corner of the Brillouin zone. We find that the renormalization effects are strongly anisotropic and are stronger in NNO/NGO than NNO/LAO. Our study reveals that substrate-induced strain tunes the crystal field splitting, which changes the FS properties, nesting conditions, and spin-fluctuation strength, and thereby controls the MIT via the formation of an electronic order parameter with QAF similar to (1/4,1/4,1/4 +/- delta).
Resumo:
Titanium dioxide thin films were deposited by RF reactive magnetron sputtering technique on p-type silicon(100) substrates held at temperatures in the range 303-673 K. The influence of substrate temperature on the core level binding energies, chemical bonding configuration, crystallographic structure and dielectric properties was investigated. X-ray photoelectron spectroscopy studies and Fourier transform infrared transmittance data confirmed the formation of stoichiometric films with anatase phase at a substrate temperature of 673 K. The films formed at 303 K were nanocrystalline with amorphous matrix while those deposited at 673 K were transformed in to crystalline phase and growth of grains in pyramidal like structure as confirmed by X-ray diffraction and atomic force microscopy respectively. Metal-oxide-semiconductor capacitors were fabricated with the configuration of Al/TiO2/Si structures. The current voltage, capacitance voltage and conductance voltage characteristics were studied to understand the electrical conduction and dielectric properties of the MOS devices. The leakage current density (at gate voltage of 2 V) decreased from 2.2 x 10(-6) to 1.7 x 10(-7) A/cm(2), the interface trap density decreased from 1.2 x 10(13) to 2.1 x 10(12) cm(-2) eV(-1) and the dielectric constant increased from 14 to 36 with increase of substrate temperature from 303 to 673 K.
Resumo:
Glass formation has been examined in the system 15PbO.xPbCl(2).(85-x)PbBr2 (where 0 <= x <= 25)where the PbO concentration is kept constant while PbCl2 and PbBr2 concentrations are varied. The glasses have been examined using thermal and spectroscopic techniques. T-8, Delta C-p, refractive index, optical basicity have been found to remain unaffected by the composition which is a curious feature of these glasses. It is found that there is a wide infrared window available for use in the investigated glasses. The IR window extends from 1000 to 1500 cm(-1) and in glasses where PbCl2 is less than 20 mol%, the window extends up to 2260 cm(-1). X-ray photoelectron spectra (XPS) revealed that the 4f(5/2) and 4f(7/2) peaks due to f-level transitions have a constant difference in energies, but with energy and FWHM values that varying sensitively and systematically with composition. The observations are discussed and suitable explanations are provided.
Resumo:
We present a framework for obtaining reliable solid-state charge and optical excitations and spectra from optimally tuned range-separated hybrid density functional theory. The approach, which is fully couched within the formal framework of generalized Kohn-Sham theory, allows for the accurate prediction of exciton binding energies. We demonstrate our approach through first principles calculations of one- and two-particle excitations in pentacene, a molecular semiconducting crystal, where our work is in excellent agreement with experiments and prior computations. We further show that with one adjustable parameter, set to produce the known band gap, this method accurately predicts band structures and optical spectra of silicon and lithium fluoride, prototypical covalent and ionic solids. Our findings indicate that for a broad range of extended bulk systems, this method may provide a computationally inexpensive alternative to many-body perturbation theory, opening the door to studies of materials of increasing size and complexity.
Resumo:
We present estimates of single spin asymmetry (SSA) in the electroproduction of taking into account the transverse momentum dependent (TMD) evolution of the gluon Sivers function and using Color Evaporation Model of charmonium production. We estimate SSA for JLab, HERMES, COMPASS and eRHIC energies using recent parameters for the quark Sivers functions which are fitted using an evolution kernel in which the perturbative part is resummed up to next-to-leading logarithms accuracy. We find that these SSAs are much smaller as compared to our first estimates obtained using DGLAP evolution but are comparable to our estimates obtained using TMD evolution where we had used approximate analytical solution of the TMD evolution equation for the purpose.
Resumo:
An organic solid, 4,7-dibromo-5,6-dinitro-2,1,3-benzothiadiazole, has been designed to serve as an illustrative example to quantitatively evaluate the relative merits of halogen and chalcogen bonding in terms of charge density features. The compound displays two polymorphic modifications, one crystallizing in a non-centrosymmetric space group (Z' = 1) and the other in a centrosymmetric space group with two molecules in the asymmetric unit (Z' = 2). Topological analysis based on QTAIM clearly brings out the dominance of the chalcogen bond over the halogen bond along with an indication that halogen bonds are more directional compared to chalcogen bonds. The cohesive energies calculated with the absence of both strong and weak hydrogen bonds as well as stacking interaction are indicative of the stabilities associated with the polymorphic forms.
Resumo:
Impedance spectroscopic studies on modified phospho-vanadate glasses containing SO42- ions have been carried out over wide range of frequency. Modulated DSC studies suggest that the addition of alkali salt makes the glass less rigid and more fragile. The frequency dependent impedance data has been used to calculate d.c conductivity and activation energies. These values are comparable with the other ionic liquids. The conductivity and relaxation phenomenon was rationalized using universal a.c conductivity power law and modulus formalism. The activation energies for relaxation mechanism was also determined using imaginary parts of electrical modulus peaks which were close to those of the d.c conductivity implying the involvement of similar energy barriers in both the processes. Kohlrausch-William-Watts (KWW) stretched exponent beta, is temperature insensitive and power law (s) exponent is temperature dependent. The enhanced conductivity in these glasses is attributed to the depolymerised structure in which migration of Na+ ions proceeds in an expanded network comprising SO42- ions in the interstitials. The effect of structure on activation energy is well supported by abinitio DFT computations. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Heterodimeric proteins with homologous subunits of same fold are involved in various biological processes. The objective of this study is to understand the evolution of structural and functional features of such heterodimers. Using a non-redundant dataset of 70 such heterodimers of known 3D structure and an independent dataset of 173 heterodimers from yeast, we note that the mean sequence identity between interacting homologous subunits is only 23-24% suggesting that, generally, highly diverged paralogues assemble to form such a heterodimer. We also note that the functional roles of interacting subunits/domains are generally quite different. This suggests that, though the interacting subunits/domains are homologous, the high evolutionary divergence characterize their high functional divergence which contributes to a gross function for the heterodimer considered as a whole. The inverse relationship between sequence identity and RMSD of interacting homologues in heterodimers is not followed. We also addressed the question of formation of homodimers of the subunits of heterodimers by generating models of fictitious homodimers on the basis of the 3D structures of the heterodimers. Interaction energies associated with these homodimers suggests that, in overwhelming majority of the cases, such homodimers are unlikely to be stable. Majority of the homologues of heterodimers of known structures form heterodimers (51.8%) and a small proportion (14.6%) form homodimers. Comparison of 3D structures of heterodimers with homologous homodimers suggests that interfacial nature of residues is not well conserved. In over 90% of the cases we note that the interacting subunits of heterodimers are co-localized in the cell. Proteins 2015; 83:1766-1786. (c) 2015 Wiley Periodicals, Inc.
Resumo:
Co3O4 catalysts were prepared by combustion synthesis using different fuels glycine (G), ODH (O) and urea (U). Morphological changes of the materials were observed by using different fuels. The prepared catalysts were characterized by XRD, XPS, SEM, TEM, BET and DRIFTS analysis. All compounds showed 100% conversion of CO below 175C. The prepared catalysts exhibited very high stability and conversions did not decrease even after 50 h of continuous operation. The oxygen storage capacity (OSC) of materials was measured by H-2-TPR analysis. Co3O4-O is having high OSC among the synthesized catalysts. The activation energies of these catalysts were found to be in the range of 42.3-64.8 kJ mol(-1). With DRIFTS analysis, the surface carbonates, superoxide anions, adsorbed CO, O-2 species on the catalyst surface were found and this information was used to develop a detailed reaction pathway. A kinetic model was developed with the help of proposed mechanism and used to fit the data. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Substrates for 2D materials are important for tailoring their fundamental properties and realizing device applications. Aluminum nitride (AIN) films on silicon are promising large-area substrates for such devices in view of their high surface phonon energies and reasonably large dielectric constants. In this paper epitaxial layers of AlN on 2 `' Si wafers have been investigated as a necessary first step to realize devices from exfoliated or transferred atomic layers. Significant thickness dependent contrast enhancements are both predicted and observed for monolayers of graphene and MoS2 on AlN films as compared to the conventional SiO2 films on silicon, with calculated contrast values approaching 100% for graphene on AlN as compared to 8% for SiO2 at normal incidences. Quantitative estimates of experimentally measured contrast using reflectance spectroscopy show very good agreement with calculated values. Transistors of monolayer graphene on AlN films are demonstrated, indicating the feasibility of complete device fabrication on the identified layers.
Resumo:
We study the variations in the Cyclotron Resonant Scattering Feature (CRSF) during 2011 outburst of the high mass X-ray binary 4U 0115+63 using observations performed with Suzaku, RXTE, Swift and INTEGRAL satellites. The wide-band spectral data with low-energy coverage allowed us to characterize the broad-band continuum and detect the CRSFs. We find that the broad-band continuum is adequately described by a combination of a low temperature (kT similar to 0.8 keV) blackbody and a power law with high energy cutoff (E-cut similar to 5.4 keV) without the need for a broad Gaussian at similar to 10 keV as used in some earlier studies. Though winds from the companion can affect the emission from the neutron star at low energies (<3 keV), the blackbody component shows a significant presence in our continuum model. We report evidence for the possible presence of two independent sets of CRSFs with fundamentals at similar to 11 and similar to 15 keV. These two sets of CRSFs could arise from spatially distinct emitting regions. We also find evidence for variations in the line equivalent widths, with the 11 keV CRSF weakening and the 15 keV line strengthening with decreasing luminosity. Finally, we propose that the reason for the earlier observed anticorrelation of line energy with luminosity could be due to modelling of these two independent line sets (similar to 11 and similar to 15 keV) as a single CRSF.
Resumo:
Eutectic growth is an interesting example for exploring the topic of pattern-formation in multi-phase systems, where the growth of the phases is coupled with the diffusive transport of one or more components in the melt. While in the case of binary alloys, the number of possibilities are limited (lamellae, rods, labyrinth etc.), their number rapidly increases with the number of components and phases. In this paper, we will investigate pattern formation during three-phase eutectic solidification using a state-of-the art phase-field method based on the grand-canonical density formulation. The major aim of the study is to highlight the role of two properties, which are the volume fraction of the solid phases and the solid-liquid interfacial energies, in the self-organization of the solid phases during directional growth. Thereafter, we will show representative phase-field simulations of a micro-structure in a real alloy (Ag-Al-Cu) using an asymmetric phase diagram as well as interfacial properties.
Resumo:
Pd2Ge nanoparticles were synthesized by superhydride reduction of K2PdCl4 and GeCl4. The syntheses were performed using a solvothermal method in the absence of surfactants, and the size of the nanoparticles was controlled by varying the reaction time. The powder X-ray diffraction (PXRD) and transmission electron microscopy data suggest that Pd2Ge nanoparticles were formed as an ordered intermetallic phase. In the crystal structure, Pd and Ge atoms occupy two different crystallographic positions with a vacancy in one of the Ge sites, which was proved by PXRD and energy-dispersive X-ray analysis. The catalyst is highly efficient for the electrochemical oxidation of ethanol and is stable up to the 250th cycle in alkaline medium. The electrochemical active surface area and current density values obtained, 1.41 cm(2) and 4.1 mA cm(-2), respectively, are superior to those of the commercial Pd on carbon. The experimentally observed data were interpreted in terms of the combined effect of adsorption energies of CH3CO and OH radical, d-band center model, and work function of the corresponding catalyst surfaces.
Resumo:
We re-assess experimental soft X-ray absorption spectra of the oxygen K-shell which we recorded operando from iron oxide during photoelectrochemical water splitting in KOH electrolyte. In particular, we refer to recently reported transitional electron hole states which originate within the charge carrier depletion layer of the iron oxide and on the iron oxide surface. For the latter we find that an intermediate oxy-peroxo species is formed on the iron oxide with increasing bias potential, which disappears upon further polarization of the electrode, concomitantly with the evolution and disappearance of the aforementioned surface state. The oxygen spectra contain also the spectroscopic signatures of the electrolyte water, the position of which changes with increasing bias potential towards lower X-ray energies, revealing the breaking and formation of hydrogen bonds in the water during the experiment. Combined with potential dependent impedance spectroscopy data we are able to sketch the molecular structure of chemical intermediates and their charge carrier dynamics. (C) 2015 Elsevier B.V. All rights reserved.