851 resultados para 670802 Aluminium
Resumo:
Target-tilted room temperature sputtering of aluminium doped zinc oxide (AZO) provides transparent conducting electrodes with sheet resistances of <10 Ω □-1 and average transmittance in the visible region of up to 84%. The properties of the AZO electrode are found to be strongly dependent on the target-tilting angle and film thickness. The AZO electrodes showed comparable performance to commercial indium tin oxide (ITO) electrodes in organic photovoltaic (OPV) devices. OPV devices containing a bulk heterojunction active layer comprised of poly(3-n-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) and an AZO transparent conducting electrode had a power conversion efficiency (PCE) of up to 2.5% with those containing ITO giving a PCE of 2.6%. These results demonstrate that AZO films are a good alternative to ITO for transparent conducting electrodes.
Resumo:
This work explored the applicability of electrocoagulation (EC) using aluminium electrodes for the removal of contaminants which can scale and foul reverse osmosis membranes from a coal seam (CS) water sample, predominantly comprising sodium chloride, and sodium bicarbonate. In general, the removal efficiency of species responsible for scaling and fouling was enhanced by increasing the applied current density/voltage and contact times (30–60 s) in the EC chamber. High removal efficiencies of species potentially responsible for scale formation in reverse osmosis units such as calcium (100%), magnesium (87.9%), strontium (99.3%), barium (100%) and silicates (98.3%) were achieved. Boron was more difficult to eliminate (13.3%) and this was postulated to be due to the elevated solution pH. Similarly, fluoride removal from solution (44%) was also inhibited by the presence of hydroxide ions in the pH range 9–10. Analysis of produced flocs suggested the dominant presence of relatively amorphous boehmite (AlOOH), albeit the formation of Al(OH)3 was not ruled out as the drying process employed may have converted aluminium hydroxide to aluminium oxyhydroxide species. Evidence for adsorption of contaminants on floc surface sites was determined from FTIR studies. The quantity of aluminium released during the electrocoagulation process was higher than the Faradaic amount which suggested that the high salt concentrations in the coal seam water had chemically reacted with the aluminium electrodes.
Resumo:
A series of quaternary metal sulfides of the general formula La3MM′S7 (M = Mn, Fe, Co; M′ = Al and M = Mg, Mn, Fe, Co, Ni; M′ = Fe) consisting of linear chains of face shared MS6 octahedra and isolated M′S4 tetrahedra has been prepared and studied. The aluminium compounds La3MAlS7 (M = Mn, Fe, Co) exhibit linear chain antiferromagnetism. Magnetic behavior of other La3MFeS7 sulfides has been examined in detail. The magnetic susceptibility of La3MgFeS7 shows that tetrahedral site Fe3+ undergoes a transition from Image to S = 2 spin state around 150 K.
Resumo:
Ammonium perchlorate (AP) has been coated with polystyrene (PS), cellulose acetate (CA), Novolak resin and polymethylmethacrylate (PMMA) by a solvent/nonsolvent method which makes use of the coacervation principle. The effect of polymer coating on AP decomposition has been studied using thermogravimetry (TG) and differential thermal analysis (DTA). Polymer coating results in the desensitization of AP decomposition. The observed effect has been attributed to the thermophysical and thermochemical properties of the polymer used for coating. The effect of polystyrene coating on thermal decomposition of aluminium perchlorate trihydrazinate and ammonium nitrate as well as on the combustion of AP-CTPB composite propellants has been studied.
Resumo:
Recent studies (I-7) clearly indicate a strong dependence of fatigue threshold parameter, A K on grain size in several alloy systems. Attempts to explain these observations on the basis of crat~tortuosity (1,8), fracture surface roughness (5,9) and crack closure (6) appear to present a fairly clear picture of the mechanisms that cause a reduction in crack growth rates at threshold. In general, it has been shown that coarse grained microstructures exhibit higher fatigue threshold in low carbon steels (1,5) aluminium alloys (7) and titanium alloys (6). In spite of these observations, there exists (10-1#) considerable uncertainity about the manner in which the AK~L depends on prior austenitic grain size in quenched and tempered steels. Studies in quenched and tempered steels demonstrating both an increase (3,12,14) as well as a decrease (11,12) in AKth with an increase in prior austenitic grain size can be sought to illustrate this point. Occasionally , the absence of any sensitivity of AKth to the variations in prior austenitJc grain size has also been reported (11,13). While a few investigators (5-7) comfortably rationalised the grain size effects on AK~L on the basis of crack closure by a comparison in terms of the closure-free component of the thresho~Ifc~, AK -f such an approach has yet to be extended to high strength steels, An attempt has been made in t~et ,pthrg sent study to explai. n the effect of pri, or austeniti.c grain size on &Kth on the basis of crack closure measurements in a high strength steel.
Resumo:
Cooking efficiency and related fuel economy issues have been studied in a particular rural area of India. Following a description of the cooking practices and conditions in this locale, cooking efficiency is examined. A cooking efficiency of only 6% was found. The use of aluminium rather than clay pots results in an increased efficiency. In addition, cooking efficiency correlates very well with specific fuel consumption. The latter parameter is much simpler to analyse than cooking efficiency. The energy losses during cooking are examined in the second part of this case study. The major energy losses are heating of excess air, heat carried away by the combustion products, heat transmitted to the stove body and floor, and the chemical energy in charcoal residue. The energy loss due to the evaporation of cooking water is also significant because it represents about one-third of the heat reaching the pots.
Resumo:
Three indoor, sheeted bag-stack fumigations of paddy rice using aluminium phosphide were undertaken in Guangdong Province, southern China. We measured the effect of two types of sheeting (polyvinylchloride [PVC] or polyethylene [PE]) and two types of floor sealing (clips or fixing into a slot with a rubber pipe) on phosphine concentration and retention. The aim was to test the feasibility of retaining fumigant at a sufficient concentration for long enough to control known resistant insect pests. Each stack was pressure tested and phosphine concentrations measured daily during the fumigation. Cages of test insects in culture medium, including resistant and susceptible strains, were placed inside each stack and could be observed through the clear sheeting. Highest concentrations for the longest period were obtained in a PVC-covered stack that included a ground sheet and wall sheets sealed to the floor with rubber pipes. A similar PVC-covered stack sealed to the floor with clips instead of pipe did not retain gas as efficiently and required re-dosing. A PE-covered stack, with no ground sheet but also with wall sheets sealed to the floor with pipe, produced an acceptable fumigation. Susceptible Rhyzopertha dominica were controlled in 2 days and the most resistant strain in 15 days. Resistant Cryptolestes ferrugineus survived until day 21. The paddy was still free of insect infestation 7 months later when the bag-stack was opened to mill the rice. Pressure half-lives correlated with gas concentration and retention. Sorption appeared to be a major limiting factor, reducing potential fumigant dosage by about 50%. The trials demonstrated the feasibility of sealing bag-stacks to a standard high enough to control all known resistant strains.
Resumo:
The metastable vacancy ordered phases observed in aluminium transition metal alloys on rapid solidification or vapour deposition can be considered as a periodic arrangement of a truncated quasiperiodic string based on the Fibonacci sequence along the left angle bracket111right-pointing angle bracket stacking direction of the original CsCl cell. Using the projection formalism developed in the context of quasicrystals, the diffraction patterns of the vacancy ordered phases are calculated for both commensurate and incommensurate projection from a periodic cubic cell in four dimensions. These are compared with experimentally observed patterns. It is shown that at increasingly longer periodicity the patterns from commensurate crystals become indistinguishable from the truly quasiperiodic one. It is suggested that there is a strong link between vacancy ordered phases and quasicrystals.
Resumo:
Thionyl fluoride undergoes quantitative oxidation with chloramine-T and reduction with lithium aluminium hydride and sodium borohydride. At elevated temperatures, (>150°C) it reacts with metals such as copper, silver, zinc and lead forming the corresponding metal sulphides, fluorides and sulphur dioxide. With the respective metal oxides, the metal fluorides and sulphur dioxide are formed.
Resumo:
A pin-on-disc test configuration has been used to examine the formation of the strain-hardened projection, or wear lips, especially at the trailing edge of the pin during dry sliding of aluminium alloys against steel discs. The mechanism of formation of such wear lips is studied with the aid of optical and electron microscopes. The plastic deformation of the pin, growth and eventual removal of the wear lip as wear debris are elucidated. The size and shape of the wear lips in pins of different shapes, i.e. square, rectangular, triangular and circular cross-sections, are described.
Resumo:
Fumigation with phosphine has the potential to disinfest grain stored in silo bags but only limited research has been conducted on whether phosphine fumigation can be undertaken effectively and safely in this form of storage. Fumigation with phosphine was tested on two (70 m) replicate silo bags each containing 240 t of wheat (9.9 and 9.2% m.c.). The target application rate of phosphine was 1.5 g m 3 with a fumigation period of 17 days. Aluminium phosphide tablets were inserted into each bag at ten release points spaced at 7 m intervals starting 3.5 m from either end of the bag. A total of 14 bioassay cages containing mixed age populations of strongly phosphine resistant Rhyzopertha dominica (F.) were inserted into each fumigated silo bag. Complete control of all life stages of R. dominica was achieved at all locations in the fumigated silo bags. Phosphine concentrations at release points increased rapidly and remained high for the duration of the fumigation. Concentrations at midway points were always lower than at the release points but exceeded 215 ppm for ten days. The diffusion coefficient of available phosphine averaged over the first three full days of the fumigation for both fumigated silo bags was 2.8 x 10 7. Venting the silo bag with an aeration fan reduced the phosphine concentration by 99% after 12 h. Relatively small amounts of phosphine continued to desorb after the venting period. Although grain temperature at the core of the silo bags remained stable at 29degreesC for 17 days, grain at the surface of the silo bags fluctuated daily with a mean of 29degreesC. The results demonstrate that silo bags can be fumigated with phosphine for complete control of infestations of strongly phosphine resistant R. dominica and potentially other species.
Resumo:
Aluminium iodide reduces sulphonyl chlorides to disulphides and sulphoxides to sulphides under mild conditions in acetonitrile.
Resumo:
Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) is a major environmental weed in coastal Queensland, Australia. There is a lack of quantitative data on its leaf chemistry and its impact on soil properties. Soils from infested vs uninfested areas, and leaves of M. unguis-cati and three co-occurring vine species (one exotic, two native) were collected at six sites (riparian and non-riparian) in south-eastern Queensland. Effects of invasion status, species, site and habitat type were examined using univariate and multivariate analyses. Habitat type had a greater effect on soil nutrients than on leaf chemistry. Invasion effect of M. unguis-cati on soil chemistry was more pronounced in non-riparian than in riparian habitat. Significantly higher values were obtained in M. unguis-cati infested (vs. uninfested) soils for ~50% of traits. Leaf ion concentrations differed significantly between exotic and native vines. Observed higher leaf-nutrient load (especially nitrogen, phosphorus and potassium) in exotic plants aligns with the preference of invasive plant species for disturbed habitats with higher nutrient input. Higher load of trace elements (aluminium, boron, cadmium and iron) in its leaves suggests that cycling of heavy-metal ions, many of which are potentially toxic at excess level, could be accelerated in soils of M. unguis-cati-invaded landscape. Although inferences from the present study are based on correlative data, the consistency of the patterns across many sites suggests that M. unguis-cati may improve soil fertility and influence nutrient cycling, perhaps through legacy effects of its own litter input.
Resumo:
Inorganic–organic clays (IOCs), clays intercalated with both organic cations such as cationic surfactants and inorganic cations such as metal hydroxy polycations have the properties of both organic and pillared clays, and thereby the ability to remove both inorganic and organic contaminants from water simultaneously. In this study, IOCs were synthesised using three different methods with different surfactant concentrations. Octadecyltrimethylammonium bromide (ODTMA) and hydroxy aluminium ([Al13O4 (OH)24(H2O)12]7+ or Al13) are used as the organic and inorganic modifiers (intercalation agents). According to the results, the interlayer distance, the surfactant loading amount and the Al/Si ratio of IOCs strictly depend on the intercalation method and the intercalation agent ratio. Interlayers of IOCs synthesised by intercalating ODTMA before Al13 and IOCs synthesised by simultaneous intercalation of ODTMA and Al13 were increased with increasing the ODTMA concentration used in the synthesis procedure and comparatively high loading amounts could be observed in them. In contrast, Al/Si decreased with increasing ODTMA concentration in these two types of IOCs. The results suggest that Al-pillars can be fixed within the interlayers by calcination and any increment in the amount of ODTMA used in the synthesis procedure did not affect the interlayer distance of the IOCs. Overall the study provides valuable insights into the structure and properties of the IOCs and their potential environmental applications.
Resumo:
The comparative trapping efficiency of indium in aluminium solid solution during vapour deposition and rapid solidification at room temperature was evaluated by studying the nature of the decomposition of the metastable solid solution. A spinodal decomposition was observed in the case of rapid solidification while vapour deposited foils decompose by a nucleation and growth type of process. From this we conclude that rapid solidification effects a more efficient non-equilibrium trapping of indium in aluminium solid solution compared to vapour deposition at room temperature.