994 resultados para 187-1160A
Resumo:
The Mg-8Zn-8Al-4RE (RE = mischmetal, mass%) magnesium alloy was prepared by using casting method. The microstructure and mechanical properties of as-cast alloy, solid solution alloy and aged alloy samples have been investigated. Optical microscopy, X-ray diffractometery and scanning electron microscope attached energy spectrometer were used to characterize the microstructure and phase composition for the alloy. Net shaped tau-Mg-32(Al,Zn)(49) phase was obtained at the grain boundary, and needle-like or blocky Al11RE3 phase disperses in grain boundary and alpha-Mg matrix. The tau-Mg-32(Al,Zn)(49) phase disappeared during solution treatment and a new phase of Al(2)CeZn2 formed during subsequent age treatment. The mechanical properties were performed by universal testing machine at room temperature, 150 degrees C and 200 degrees C, separately. The ultimate tensile strength of as-cast alloy is lower compared to an age treatment alloy at 200 degrees C for 12h. The strengths decreased with enhancing test temperature, but elongation has not been effect by age treatment.
Resumo:
The possibility of mesoporous acid solid as a carrier for metallocene catalyst in ethylene polymerization and catalyst for polyethylene (PE) catalytic degradation was investigated. Here, HMCM- 41 and AIMCM-41, and mesoporous silicoaluminophosphate molecular sieves (SAPO1 and SAPO2) were synthesized and used as acid solid. Much more gases were produced during catalytic degradation in PE/acid solid mixtures via in situ polymerization than those via physical mixing. The particle size distribution results exhibited that the particle size of SAPO1 in the PE/SAPO1 mixture via in situ polymerization was about 1/14 times of that of the original SAPO1 or SAPO1-supported metallocene catalyst. This work shows a novel technology for chemical recycling of polyolefin.
Resumo:
应用基质辅助激光解吸电离飞行时间质谱法测定了牛甲状腺球蛋白的纯度与相对分子量.选择芥子酸为适宜的基质,并对所得的结果进行了讨论.实验结果表明分析方法具有灵敏度高、重现性好、信息直观等特点,明显优于其他传统测定蛋白质的方法.
Resumo:
A new solid solution system of Al in WC, with the stoichiometry of (W1-xAlx)C (x = 0.10, 0.25, 0.50, 0.75, 0.86), has been synthesized by a solid-state reaction between W1-xAlx alloys and carbon at around 1673 K in vacuum. Environment scanning electron microscope, energy- dispersive analysis of X-ray, X-ray photoelectron spectroscopy, and inductively coupled plasma analyses are used to certify the formation of the products. The mechanism of the solid-state reaction is also discussed. (W1-xAlx)C is identified to crystallize in the hexagonal space group P6m2 (No. 187) and belongs to the WC structure type. The atoms of W and Al occupy the same lattice site (la site) in the cell of (W1-xAlx)C. The cell parameters for each specimen in the phase of W-AI-C are quite close to that of WC, while their densities are far lower than that of WC.
Resumo:
The crystallization and melting behavior of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) (PHBV) and a 30/70 (w/w) PHBV/poly(propylene carbonate) (PPC) blend was investigated with differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR). The transesterification reaction between PHBV and PPC was detected in the melt-blending process. The interaction between the two macromolecules was confirmed by means of FTIR analysis. During the crystallization process from the melt, the crystallization temperature of the PHBV/PPC blend decreased about 8 degreesC, the melting temperature was depressed by 4 degreesC, and the degree of crystallinity of PHBV in the blend decreased about 9.4%; this was calculated through a comparison of the DSC heating traces for the blend and pure PHBV. These results indicated that imperfect crystals of formed, crystallization was inhibited, and the crystallization ability of PHBV was weakened in the blend. The equilibrium melting temperatures of PHBV and the 30/70 PHBV/PPC blend isothermally crystallized were 187.1 and 179 degreesC, respectively.
Resumo:
首先制备MMT/MgCl2/TiCl4插层催化剂,并通过原位聚合的方法制得聚丙烯(PP)/蒙脱土(MMT)纳米复合材料。XRD和TEM分析结果表明,蒙脱土在聚丙烯基体中被剥离并成纳米级分散。在低于80℃左右时,PP/MMT纳米复合材料的储能模量明显高于纯聚丙烯的储能模量,PP/MMT复合材料的玻璃化温度比纯PP提高了2℃~5℃。
Resumo:
In this paper, BPO4 and Ba2+-doped BPO4 powder samples were prepared by the sol-gel process using glycerol and poly(ethylene glycol) as additives. The structure and optical properties of the resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), diffuse reflection spectra, photoluminescence (PL) excitation and emission spectra, quantum yield, kinetic decay, and electron paramagnetic resonance (EPR), respectively. It was found that the undoped BPO4 showed a weak purple blue emission (409 nm, lifetime 6.4 ns) due to the carbon impurities involved in the host lattice. Doping Ba2+ into BPO4 resulted in oxygen-related defects as additional emission centers which enhanced the emission intensity greatly (> 10x) and shifted the emission to a longer-wavelength region (lambda(max) = 434 nm; chromaticity coordinates: x = 0.174, y = 0. 187) with a bluish-white color. The highest emission intensity was obtained ;when doping 6 mol % Ba2+ in BPO4, which has a quantum yield as high as 31%. The luminescent mechanisms of BPO4 and Ba2+-doped BPO4 were discussed in detail according to the existing models for silica-based materials.
Resumo:
(W0.5Al0.5)C-0.5 substoichiometric compound is synthesized by a combination of mechanical milling and high-pressure reactive sintering. X-ray diffraction is used to monitor the phase changes and crystallization of (W0.5Al0.5) C-0.5 during the whole reaction process. As a result, (W0.5Al0.5) C-0.5 is identified as the hexagonal WC-type belonging to the P-6m2 space group (No. 187), and the lattice parameters of (W0.5Al0.5)C-0.5 are calculated to be a = 2.907 (1) angstrom, c = 2.838 (1) angstrom, which are very similar to those of WC even if there are approximately 50 pct carbon vacancies in the cell of (W0.5Al0.5)C-0.5 as compared with WC. The substoichiometric (W0.5Al0.5)C-0.5 compound has a Vickers microhardness of 2385 +/- 70 kg mm(-2), which is as high as that of WC, while its density is far lower than that of WC.
Resumo:
The wide-angle X-ray diffraction (WAXD) patterns of isothermally crystallized Nylon 1212 show that gamma-form crystals form below 90 degrees C and the alpha-form crystals call exist above 140 degrees C. In the temperature range of 90-140 degrees C, the a-form gamma-form crystals coexist. Variable-temperature WAXD exhibits that the nylon 1212 gamma-form does not show crystal and transition on heating, while a-form isothermally crystallized at 160 degrees C exhibits Brill transition at a little higher than 180 degrees C on heating. The multiple melting behaviors of Nylon 1212 isothermally crystallized from melt come from a complex mechanism of different crystal structures, dual lamellar population and melting-recrystallization. In polarized optical microscope (POM) observations, Nylon 1212 isothermally crystallized at 175 degrees C shows the ringed banded spherulites. However, at temperatures below 160 degrees C the ringed handed image disappears, and cross-extinct spherulites are formed.
Resumo:
A polytetrafluoroethylene(PTFE) capillary Ubbelohde viscometer was designed and constructed. The relative viscosities of aqueous solutions of a polyethylene oxide and a polyvinylpyrrolidone sample were carefully determined down to an extremely dilute concentration region. In comparison with the data obtained from the common glass capillary viscometer, slippage is believed to occur in the PTFE capillary due to its hydrophobic nature. While for the glass capillary viscometer, conventional viscous flow is operative and adsorption phenomena occur since both the solvent water and aqueous solution are wet and/or adsorbed onto the glass capillary surface due to the existence of hydroxyl groups on glass surface. The data were analyzed with a recently developed wall-effect theory and satisfactory results were obtained.
Resumo:
中国科学院山西煤炭化学研究所
Resumo:
Humid solid state reaction at room temperature was utilized for the first time to coat Y2O3 : Eu3+ particles with alumina. The particles were studied with an X-ray photoelectron spectrometer (XPS), a scanning electron microscope (SEM), and an energy dispersive spectrometer (EDS). XPS results show that the yttrium and europium contents are decreased and that the aluminum content is the highest except for that of oxygen after coating. SEM and EDS results show that particles are coated with a thin shell of alumina.
Resumo:
A series of novel nitrogen- and sulfur-containing conjugated polymers with well-defined conjugation length have been synthesized via an acid-induced self-polycondensation of functional monomers with methylsulfinyl groups. Synthesized polymers exhibit good solubility in common solvents, such as CHCl3, THF, DMF, DMSO, and NMP. With increased numbers of aminophenyl groups, these polymers have shown similar electrical properties to polyaniline (PAn), and these are demonstrated by UV-vis spectroscopy and cyclic voltammetry (CV) measurements on the polymers. The conductivity of preliminarily protonic-doped poly[phenylene sulfide-alt-tetrakis(aniline)] (PPSTEA) is up to 10(-1) S cm(-1).
Resumo:
Nonisothermal and isothermal melt crystallization kinetics of a novel aryl ether ketone polymer containing meta-phenylene linkages, PEKEKK (T/I), were studied by differential scanning calorimetry (DSC). The Avrami equation modified by Jeziorny and a new approach by combining the Avrami equation with the Ozawa equation could describe the nonisothermal crystallization. Isothermal crystallization could also be described by the Avrami equation. The activation energies were 187 and 159 kJ/mol for nonisothermal and isothermal crystallization, respectively. Using the Hoffman-Weeks method, the equilibrium melting point T-m(o) was estimated as 353 degrees C. From the spherulitic growth equation proposed by Hoffman and Lauritzen, the nucleation parameter K-g of the isothermal melt crystallization was estimated as 5.49 x 10(5) K-2. The crystallization characteristics of PEKEKK (T/I) were compared with those of all-para PEKEKK. The differences were explained by differences in the chain flexibility of the two polymers.