998 resultados para 181-1125
Resumo:
Nitrogen is the nutrient that is most absorbed by the corn crop, with the most complex management, and has the highest share on the cost of corn production. The objective of this work was to evaluate the economic viability of different rates and split-applications of nitrogen fertilization, as such as urea, in the corn crop in a eutrophic Red Latosol (Oxisol). The study was carried out in the Experimental Station of the Regional Pole of the Sao Paulo Northwest Agribusiness Development (APTA), in Votuporanga, State of Sao Paulo, Brazil. The experimental design was randomized complete blocks with nine treatments and four replications, consisting of five N rates: 0, 55, 95, 135 and 175 kg ha(-1), 15 kg ha-l applied in the seeding and the remainder in top dressing: 40 and 80 kg ha(-1) N at forty days after seeding (DAS), or 1/2 + 1/2 at 20 and 40 DAS; 120 kg ha-1 N split in 1/2 + 1/2 or 1/3 + 1/3 + 1/3 at 20, 40 or 60 DAS; 160 kg ha(-1) N split in 1/4 + 3/8 + 3/8 or 114 + 1/4 + 1/4 + 1/4 at 20, 40, 60 and 80 DAS. The application of 135 kg ha-l of N split in three times provided the best benefit/cost ratio. The non-application of N provided the lowest economic return, proving to be unviable.
Resumo:
Along-term experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the concentration of Ba in soil and in maize plants grown in a soil treated with sewage sludge for nine consecutive years. During 2005/2006, maize was used as test plants and the experimental design was in randomized complete blocks with four treatments and five replicates. Treatments consisted of: 0.0, 45.0, 90.0 and 127.5 t ha(-1) sewage sludge (dry basis). Sewage sludge application increased soil Ba concentration. Barium accumulated in the parts of maize plants were generally affected by the successive applications of sewage sludge to the soil. However, the concentration of Ba in maize grain did not exceed the critical levels of Ba for human consumption. Sewage sludge applied to soil for a long time did not affect dry matter and grain production, nevertheless had the similar effect of mineral fertilization. Published by Elsevier B.V.
Resumo:
A new species of land planarian from Colombia, Gigantea maupoi sp. nov., is described herein. The penis papilla of the new species is provided with numerous accessory genital organs, or mgo. These mgo are of a unique morphology, consisting of a very strong barrel-shaped circular muscle coat and an underlying longitudinal one, both derived from the subepithelial musculature of the penis papilla. The central mass of each mgo contains secretions and 8-15 canalicula that open to the male atrium on the central region of the organ. Differences in structures constituting the mgo and details of the muscular systems and of the reproductive organs among the 11 Gigantea species from literature and from type material of G. bistriata (Hyman, 1962), G. chiriquii (Hyman, 1962), and G. sandersoni (Prudhoe, 1949) reexamined here show that the genus is heterogeneous.
Resumo:
The aim of this paper is to highlight some of the methods of imagetic information representation, reviewing the literature of the area and proposing a model of methodology adapted to Brazilian museums. An elaboration of a methodology of imagetic information representation is developed based on Brazilian characteristics of information treatment in order to adapt it to museums. Finally, spreadsheets that show this methodology are presented.
Resumo:
The objective of this research was to improve Glucose-6-phosphate dehydrogenase (G6PD) production by Saccharomyces cerevisiae W303-181, which carry the plasmid YEpPGK-G6PD, by varying the following cultivation conditions: pH value (4.8, 5.7 and 6.6); inoculum concentration (0.1, 0.6 and 1.1 g/L) and initial glucose concentration (20.0, 30.0 and 40.0 g/L). The effect of those variables on G6PD production capability was studied by the application of response surface statistical analysis. The results showed that the highest G6PD production (1594.2 U/L), specific activity (1189.7 U/g(cell)) and productivity (45.6 U/L.h) occurred at pH 4.8, inoculum concentration of 0.1 g/L and initial glucose concentration of 20.0 g/L, under agitation of 150 rpm at 30 degrees C after 36 h. In this work, the strain expressed about 21 fold more activity than the wild S. cerevisiae strain, being an attractive and promising new source of this enzyme.
Resumo:
A type of Nb(2)O(5)center dot 3H(2)O was synthesized and its phosphate removal potential was investigated in this study. The kinetic study, adsorption isotherm, pH effect, thermodynamic study and desorption were examined in batch experiments. The kinetic process was described by a pseudo-second-order rate model very well. The phosphate adsorption tended to increase with a decrease of pH. The adsorption data fitted well to the Langmuir model with which the maximum P adsorption capacity was estimated to be 18.36 mg-Pg(-1). The peak appearing at 1050 cm(-1) in IR spectra after adsorption was attributed to the bending vibration of adsorbed phosphate. The positive values of both Delta H degrees and Delta S degrees suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. Delta G degrees values obtained were negative indicating a spontaneous adsorption process. A phosphate desorbability of approximately 68% was observed with water at pH 12, which indicated a relatively strong bonding between the adsorbed phosphate and the sorptive sites on the surface of the adsorbent. The immobilization of phosphate probably occurs by the mechanisms of ion exchange and physicochemical attraction. Due to its high adsorption capacity, this type of hydrous niobium oxide has the potential for application to control phosphorus pollution.
Resumo:
Hot tensile and creep tests were carried out on Kanthal A1 alloy in the temperature range from 600 to 800 degrees C. Each of these sets of data were analyzed separately according to their own methodologies, but an attempt was made to find a correlation between them. A new criterion proposed for converting hot tensile data to creep data, makes possible the analysis of the two kinds of results according to usual creep relations like: Norton, Monkman-Grant, Larson-Miller and others. The remarkable compatibility verified between both sets of data by this procedure strongly suggests that hot tensile data can be converted to creep data and vice-versa for Kanthal A1 alloy, as verified previously for other metallic materials.
Resumo:
The single phase induction motors needs two stator windings to produce rotating magnetic field : one main winding and the other auxiliary winding. The aim of the auxiliary winding is to create the rotating electromagnetic field when the machine is started-up and is afterwards turned off, generally through the centrifugal switch coupled together with the shaft of the machine rotor. The main purpose of this document is to evaluate the influence that the two windings have on the external characteristics of the single phase induction motor. For this purpose, two different kinds of windings were carried out and simulated, with the proposal to obtain some benefits. The main winding and the auxiliary winding were prepared and mounted on a prototype. The simulation was done via software based FEM, to make the extraction and results analysis possible. This results are shown at the end this document.
Resumo:
Hydrodynamic journal bearings are susceptible to static angular misalignment, resulting from improper assemblage, elastic and thermal distortion of the shaft and bearing housing, and also manufacturing errors. Several previous works on the theme, both theoretical and experimental, focused on the determination of the static properties of angular misaligned bearings. Although some reports show agreement between theoretical and experimental results, the increasingly severe operating conditions of hydrodynamic bearings (heavy loads and high rotational speeds) require more reliable theoretical formulations for the evaluation of the journal performance during the design process. The consideration of the angular misalignment in the derivation of the Reynolds equation is presented here in detail, showing that properly conducted geometric and magnitude-order analyses lead to the inclusion of an axial wedge effect term that influences the velocity and pressure fields in the lubricant film. Numerical results evidence that this axial wedge effect more significantly affects the hydrodynamic forces and static operational properties of tilted short journal bearings.
Resumo:
FAPESP, the Sao Paulo State Research Foundation[04/04611-5]
Resumo:
The premature failure of a large agglomeration machine used for the annual production of 360,000 m(3) of eucalypt fiber panels was investigated to identify the nucleation and growth mechanisms of cracking in PH stainless steel belts (126 m x 2.9 m x 3.0 mm). These belts are used to compress a cushion composed of eucalyptus fibers and glue, being the pressure transmitted from the pistons by the action of numerous case-hardening steel rolls. Examination of the belt working interfaces (belt/rolls and belt/eucalypt fibers) indicated that the main cracking was nucleated on the belt/roll interface and that there is a clear relationship between the crack nucleation and the presence of superficial irregularities, which were observed on the belt/roll working surface. Used rolls showed the presence of perimetric wear marks and 2 mu m silicon-rich encrusted particles (identified as silicon carbide). Lubricant residues contained the presence of helicoidal wires, which were originated by the release of the stainless steel cleaning brush bristles, and 15 mu m diameter metallic particles, which were generated by material detachment of the belt. The presence of foreign particles on the tribological interface contributed to an increase of the shear stresses at the surfaces and, consequently, the number of the contact fatigue crack nucleation sites in the belt/roll tribo-interface. The cracking was originated on the belt/roll interface of the stainless steel belt by a mixed rolling/slip contact fatigue mechanism, which promoted spalling and further nucleation and growth of conventional fatigue cracks. Finally, the system lubrication efficiency and the cleaning procedure should be optimised in order to increase the life expectancy of the belt. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Polyurethane composites reinforced with curaua fiber at 5, 10 and 20% mass/mass proportions were prepared by using the conventional melt-mixing method. The influence of curaua fibers on the thermal behavior and polymer cohesiveness in polyurethane matrix was evaluated by dynamic mechanical thermal analysis (DMTA) and by differential scanning calorimetry (DSC). This specific interaction between the fibers and the hard segment domain was influenced by the behavior of the storage modulus E` and the loss modulus EaEuro(3) curves. The polyurethane PU80 is much stiffer and resistant than the other composites at low temperatures up to 70A degrees C. All samples were thermoplastic and presented a rubbery plateau over a wide temperature range above the glass transition temperature and a thermoplastic flow around 170A degrees C.
Resumo:
The water activity of aqueous solutions of EO-PO block copolymers of six different molar masses and EO/PO ratios and of maltodextrins of three different molar masses was determined at 298.15 K. The results showed that these aqueous solutions present a negative deviation from Raoult`s law. The Flory-Huggins and UNIFAC excess Gibbs energy models were employed to model the experimental data. While a good agreement was obtained with the Flory-Huggins equation, discrepancies were observed when predicting the experimental behavior with the UNIFAC model. The water activities of ternary systems formed by a synthetic polymer, maltodextrin and water were also measured and used to test the predictive capability of both models.
Resumo:
The physiological responses of sugarcane (Succharion officinarum L.) to oxidative stress induced by methyl viologen (paraquat) were examined with respect to photochemical activity, chlorophyll content, lipid peroxidation and superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. Thirty-day-old sugarcane plants were sprayed with 0, 2, 4, 6 and 8 mM methyl viologen (MV). Chlorophyll fluorescence was measured after 18 It and biochemical analyses were performed after 24 and 48 h. Concentrations of MV above 2 mM caused significant damage to photosystem II (PSII) activity. Potential and effective quantum efficiency of PSII and apparent electron transport rate were greatly reduced or practically abolished. Both chlorophyll and soluble protein contents steadily decreased with MV concentrations above 2 mM after 24 It of exposure, which became more pronounced after 48 It, achieving a 3-fold decrease. Insoluble protein contents were little affected by MV. Oxidative stress induced by MV was evidenced by increases in lipid peroxidation. Specific activity of SOD increased, even after 48 h of exposure to the highest concentrations of MV, but total activity on a fresh weight basis did not change significantly. Nondenaturing YAGE assayed with H2O2 and KCN showed that treatment with MV did not change Cu/Zn-SOD and MnSOD isoform activities. In contrast, APX specific activity increased at 2 mM MV but then dropped at higher doses. Oxidative damage induced by MV was inversely related to APX activity. It is suggested that the major MV-induced oxidative damages in sugarcane leaves were related to excess H2O2, probably in chloroplasts, caused by an imbalance between SOD and APX activities, in which APX was a limiting step. Reduced photochemical activity allowed the early detection of the ensuing oxidative stress. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The recognition of temporally stable locations with respect to soil water content is of importance for soil water management decisions, especially in sloping land of watersheds. Neutron probe soil water content (0 to 0.8 m), evaluated at 20 dates during a year in the Loess Plateau of China, in a 20 ha watershed dominated by Ust-Sandiic Entisols and Aeolian sandy soils, were used to define their temporal stability through two indices: the standard deviation of relative difference (SDRD) and the mean absolute bias error (MABE). Specific concerns were (a) the relationship of temporal stability with soil depth, (b) the effects of soil texture and land use on temporal stability, and (c) the spatial pattern of the temporal stability. Results showed that temporal stability of soil water content at 0.2 m was significantly weaker than those at the soil depths of 0.6 and 0.8 m. Soil texture can significantly (P<0.05) affect the stability of soil water content except for the existence of an insignificant difference between sandy loam and silt loam textures, while temporal stability of areas covered by bunge needlegrass land was not significantly different from those covered by korshinsk peashrub. Geostatistical analysis showed that the temporal stability was spatially variable in an organized way as inferred by the degree of spatial dependence index. With increasing soil depth, the range of both temporal stability indices showed an increasing trend, being 65.8-120.5 m for SDRD and 148.8-214.1 m for MABE, respectively. This study provides a valuable support for soil water content measurements for soil water management and hydrological applications on sloping land areas. (C) 2010 Elsevier B.V. All rights reserved.