950 resultados para 080403 Data Structures
Resumo:
Background-Randomized trials that studied clinical outcomes after percutaneous coronary intervention (PCI) with bare metal stenting versus coronary artery bypass grafting (CABG) are underpowered to properly assess safety end points like death, stroke, and myocardial infarction. Pooling data from randomized controlled trials increases the statistical power and allows better assessment of the treatment effect in high-risk subgroups. Methods and Results-We performed a pooled analysis of 3051 patients in 4 randomized trials evaluating the relative safety and efficacy of PCI with stenting and CABG at 5 years for the treatment of multivessel coronary artery disease. The primary end point was the composite end point of death, stroke, or myocardial infarction. The secondary end point was the occurrence of major adverse cardiac and cerebrovascular accidents, death, stroke, myocardial infarction, and repeat revascularization. We tested for heterogeneities in treatment effect in patient subgroups. At 5 years, the cumulative incidence of death, myocardial infarction, and stroke was similar in patients randomized to PCI with stenting versus CABG (16.7% versus 16.9%, respectively; hazard ratio, 1.04, 95% confidence interval, 0.86 to 1.27; P = 0.69). Repeat revascularization, however, occurred significantly more frequently after PCI than CABG (29.0% versus 7.9%, respectively; hazard ratio, 0.23; 95% confidence interval, 0.18 to 0.29; P<0.001). Major adverse cardiac and cerebrovascular events were significantly higher in the PCI than the CABG group (39.2% versus 23.0%, respectively; hazard ratio, 0.53; 95% confidence interval, 0.45 to 0.61; P<0.001). No heterogeneity of treatment effect was found in the subgroups, including diabetic patients and those presenting with 3-vessel disease. Conclusions-In this pooled analysis of 4 randomized trials, PCI with stenting was associated with a long-term safety profile similar to that of CABG. However, as a result of persistently lower repeat revascularization rates in the CABG patients, overall major adverse cardiac and cerebrovascular event rates were significantly lower in the CABG group at 5 years.
Resumo:
Unauthorized accesses to digital contents are serious threats to international security and informatics. We propose an offline oblivious data distribution framework that preserves the sender's security and the receiver's privacy using tamper-proof smart cards. This framework provides persistent content protections from digital piracy and promises private content consumption.
Resumo:
The field of protein crystallography inspires and enthrals, whether it be for the beauty and symmetry of a perfectly formed protein crystal, the unlocked secrets of a novel protein fold, or the precise atomic-level detail yielded from a protein-ligand complex. Since 1958, when the first protein structure was solved, there have been tremendous advances in all aspects of protein crystallography, from protein preparation and crystallisation through to diffraction data measurement and structure refinement. These advances have significantly reduced the time required to solve protein crystal structures, while at the same time substantially improving the quality and resolution of the resulting structures. Moreover, the technological developments have induced researchers to tackle ever more complex systems, including ribosomes and intact membrane-bound proteins, with a reasonable expectation of success. In this review, the steps involved in determining a protein crystal structure are described and the impact of recent methodological advances identified. Protein crystal structures have proved to be extraordinarily useful in medicinal chemistry research, particularly with respect to inhibitor design. The precise interaction between a drug and its receptor can be visualised at the molecular level using protein crystal structures, and this information then used to improve the complementarity and thus increase the potency and selectivity of an inhibitor. The use of protein crystal structures in receptor-based drug design is highlighted by (i) HIV protease, (ii) influenza virus neuraminidase and (iii) prostaglandin H-2-synthetase. These represent, respectively, examples of protein crystal structures that (i) influenced the design of drugs currently approved for use in the treatment of HIV infection, (ii) led to the design of compounds currently in clinical trials for the treatment of influenza infection and (iii) could enable the design of highly specific non-steroidal anti-inflammatory drugs that lack the common side-effects of this drug class.
Resumo:
Dherte PM, Negrao MPG, Mori Neto S, Holzhacker R, Shimada V, Taberner P, Carmona MJC - Smart Alerts: Development of a Software to Optimize Data Monitoring. Background and objectives: Monitoring is useful for vital follow-ups and prevention, diagnosis, and treatment of several events in anesthesia. Although alarms can be useful in monitoring they can cause dangerous user`s desensitization. The objective of this study was to describe the development of specific software to integrate intraoperative monitoring parameters generating ""smart alerts"" that can help decision making, besides indicating possible diagnosis and treatment. Methods: A system that allowed flexibility in the definition of alerts, combining individual alarms of the parameters monitored to generate a more elaborated alert system was designed. After investigating a set of smart alerts, considered relevant in the surgical environment, a prototype was designed and evaluated, and additional suggestions were implemented in the final product. To verify the occurrence of smart alerts, the system underwent testing with data previously obtained during intraoperative monitoring of 64 patients. The system allows continuous analysis of monitored parameters, verifying the occurrence of smart alerts defined in the user interface. Results: With this system a potential 92% reduction in alarms was observed. We observed that in most situations that did not generate alerts individual alarms did not represent risk to the patient. Conclusions: Implementation of software can allow integration of the data monitored and generate information, such as possible diagnosis or interventions. An expressive potential reduction in the amount of alarms during surgery was observed. Information displayed by the system can be oftentimes more useful than analysis of isolated parameters.
Determination of the solution structures of conantokin-G and conantokin-T by CD and NMR spectroscopy
Resumo:
Conantokin-G and conantokin-T are two paralytic polypeptide toxins originally isolated from the venom of the fish-hunting cone snails of the genus Conus. Conantokin-G and conantokin-T are the only naturally occurring peptidic compounds which possess N-methyl-D-aspartate receptor antagonist activity, produced by a selective non-competitive antagonism of polyamine responses, They are also structurally unusual in that they contain a disproportionately large number of acid labile post-translational gamma-carboxyglutamic acid (Gla) residues, Although no precise structural information has previously been published for these peptides, early spectroscopic measurements have indicated that both conantokin-G and conantokin-T form alpha-helical structures, although there is some debate whether the presence of calcium ions is required for these peptides to adopt this fold, We now report a detailed structural study of synthetic conantokin-G and conantokin-T in a range of solution conditions using CD and H-1 NMR spec troscopy. The three-dimensional structures of conantokin-T and conantokin-G were calculated from H-1 NMR-derived distance and dihedral restraints. Both conantokins were found to contain a mixture of alpha- and 3(10) helix, that give rise to curved and straight helical conformers. Conantokin-G requires the presence of divalent cations (Zn2+, Ca2+, Cu2+, Or Mg2+) to form a stable iv-helix, while conantokin-T adopts a stable alpha-helical structure in aqueous conditions, in the presence or absence of divalent cations (Zn2+, Ca2+, Cu2+, Or Mg2+).
Resumo:
The structure of the Tus-Ter DNA replication fork arrest complex of Escherichia coli reveals a novel architecture for the bound Tus protein and a new type of DNA-binding motif, The structure of the complex may explain how Tus can block movement of a replication fork approaching from one direction and not the other.
Resumo:
Objective: To illustrate methodological issues involved in estimating dietary trends in populations using data obtained from various sources in Australia in the 1980s and 1990s. Methods: Estimates of absolute and relative change in consumption of selected food items were calculated using national data published annually on the national food supply for 1982-83 to 1992-93 and responses to food frequency questions in two population based risk factor surveys in 1983 and 1994 in the Hunter Region of New South Wales, Australia. The validity of estimated food quantities obtained from these inexpensive sources at the beginning of the period was assessed by comparison with data from a national dietary survey conducted in 1983 using 24 h recall. Results: Trend estimates from the food supply data and risk factor survey data were in good agreement for increases in consumption of fresh fruit, vegetables and breakfast food and decreases in butter, margarine, sugar and alcohol. Estimates for trends in milk, eggs and bread consumption, however, were inconsistent. Conclusions: Both data sources can be used for monitoring progress towards national nutrition goals based on selected food items provided that some limitations are recognized. While data collection methods should be consistent over time they also need to allow for changes in the food supply (for example the introduction of new varieties such as low-fat dairy products). From time to time the trends derived from these inexpensive data sources should be compared with data derived from more detailed and quantitative estimates of dietary intake.
Resumo:
In this study, blood serum trace elements, biochemical and hematological parameters were obtained to assess the health status of an elderly population residing in So Paulo city, SP, Brazil. Results obtained showed that more than 93% of the studied individuals presented most of the serum trace element concentrations and of the hematological and biochemical data within the reference values used in clinical laboratories. However, the percentage of elderly presenting recommended low density lipoprotein (LDL) cholesterol concentrations was low (70%). The study indicated positive correlation between the concentrations of Zn and LDL-cholesterol (p < 0.06).
Resumo:
Mutations in PKD2 are responsible for approximately 15% of the autosomal dominant polycystic kidney disease cases. This gene encodes polycystin-2, a calcium-permeable cation channel whose C-terminal intracytosolic tail (PC2t) plays an important role in its interaction with a number of different proteins. In the present study, we have comprehensively evaluated the macromolecular assembly of PC2t homooligomer using a series of biophysical and biochemical analyses. Our studies, based on a new delimitation of PC2t, have revealed that it is capable of assembling as a homotetramer independently of any other portion of the molecule. Our data support this tetrameric arrangement in the presence and absence of calcium. Molecular dynamics simulations performed with a modified all-atoms structure-based model supported the PC2t tetrameric assembly, as well as how different populations are disposed in solution. The simulations demonstrated, indeed, that the best-scored structures are the ones compatible with a fourfold oligomeric state. These findings clarify the structural properties of PC2t domain and strongly support a homotetramer assembly of PC2.
Resumo:
Current design procedures for Subsurface Flow (SSF) Wetlands are based on the simplifying assumptions of plug flow and first order decay of pollutants. These design procedures do yield functional wetlands but result in over-design and inadequate descriptions of the pollutant removal mechanisms which occur within them. Even though these deficiencies are often noted, few authors have attempted to improve modelling of either flow or pollutant removal in such systems. Consequently the Oxley Creek Wetland, a pilot scale SSF wetland designed to enable rigorous monitoring, has recently been constructed in Brisbane, Australia. Tracer studies have been carried out in order to determine the hydraulics of this wetland prior to commissioning it with sealed sewage. The tracer studies will continue during the wetland's commissioning and operational phases. These studies will improve our understanding of the hydraulics of newly built SSF wetlands and the changes brought on by operational factors such as biological films and wetland plant root structures. Results to date indicate that the flow through the gravel beds is not uniform and cannot be adequately modelled by a single parameter, plug flow with dispersion, model. We have developed a multiparameter model, incorporating four plug flow reactors, which provides a better approximation of our experimental data. With further development this model will allow improvements to current SSF wetland design procedures and operational strategies, and will underpin investigations into the pollutant removal mechanisms at the Oxley Creek Wetland. (C) 1997 IAWQ. Published by Elsevier Science Ltd.
Resumo:
A continuum model for regular block structures is derived by replacing the difference quotients of the discrete equations by corresponding differential quotients. The homogenization procedure leads to an anisotropic Cosserat Continuum. For elastic block interactions the dispersion relations of the discrete and the continuous models are derived and compared. Yield criteria for block tilting and sliding are formulated. An extension of the theory for large deformation is proposed. (C) 1997 by John Wiley & Sons, Ltd.
Wavelet correlation between subjects: A time-scale data driven analysis for brain mapping using fMRI
Resumo:
Functional magnetic resonance imaging (fMRI) based on BOLD signal has been used to indirectly measure the local neural activity induced by cognitive tasks or stimulation. Most fMRI data analysis is carried out using the general linear model (GLM), a statistical approach which predicts the changes in the observed BOLD response based on an expected hemodynamic response function (HRF). In cases when the task is cognitively complex or in cases of diseases, variations in shape and/or delay may reduce the reliability of results. A novel exploratory method using fMRI data, which attempts to discriminate between neurophysiological signals induced by the stimulation protocol from artifacts or other confounding factors, is introduced in this paper. This new method is based on the fusion between correlation analysis and the discrete wavelet transform, to identify similarities in the time course of the BOLD signal in a group of volunteers. We illustrate the usefulness of this approach by analyzing fMRI data from normal subjects presented with standardized human face pictures expressing different degrees of sadness. The results show that the proposed wavelet correlation analysis has greater statistical power than conventional GLM or time domain intersubject correlation analysis. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The identification, modeling, and analysis of interactions between nodes of neural systems in the human brain have become the aim of interest of many studies in neuroscience. The complex neural network structure and its correlations with brain functions have played a role in all areas of neuroscience, including the comprehension of cognitive and emotional processing. Indeed, understanding how information is stored, retrieved, processed, and transmitted is one of the ultimate challenges in brain research. In this context, in functional neuroimaging, connectivity analysis is a major tool for the exploration and characterization of the information flow between specialized brain regions. In most functional magnetic resonance imaging (fMRI) studies, connectivity analysis is carried out by first selecting regions of interest (ROI) and then calculating an average BOLD time series (across the voxels in each cluster). Some studies have shown that the average may not be a good choice and have suggested, as an alternative, the use of principal component analysis (PCA) to extract the principal eigen-time series from the ROI(s). In this paper, we introduce a novel approach called cluster Granger analysis (CGA) to study connectivity between ROIs. The main aim of this method was to employ multiple eigen-time series in each ROI to avoid temporal information loss during identification of Granger causality. Such information loss is inherent in averaging (e.g., to yield a single ""representative"" time series per ROI). This, in turn, may lead to a lack of power in detecting connections. The proposed approach is based on multivariate statistical analysis and integrates PCA and partial canonical correlation in a framework of Granger causality for clusters (sets) of time series. We also describe an algorithm for statistical significance testing based on bootstrapping. By using Monte Carlo simulations, we show that the proposed approach outperforms conventional Granger causality analysis (i.e., using representative time series extracted by signal averaging or first principal components estimation from ROIs). The usefulness of the CGA approach in real fMRI data is illustrated in an experiment using human faces expressing emotions. With this data set, the proposed approach suggested the presence of significantly more connections between the ROIs than were detected using a single representative time series in each ROI. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
Here, we examine morphological changes in cortical thickness of patients with Alzheimer`s disease (AD) using image analysis algorithms for brain structure segmentation and study automatic classification of AD patients using cortical and volumetric data. Cortical thickness of AD patients (n = 14) was measured using MRI cortical surface-based analysis and compared with healthy subjects (n = 20). Data was analyzed using an automated algorithm for tissue segmentation and classification. A Support Vector Machine (SVM) was applied over the volumetric measurements of subcortical and cortical structures to separate AD patients from controls. The group analysis showed cortical thickness reduction in the superior temporal lobe, parahippocampal gyrus, and enthorhinal cortex in both hemispheres. We also found cortical thinning in the isthmus of cingulate gyrus and middle temporal gyrus at the right hemisphere, as well as a reduction of the cortical mantle in areas previously shown to be associated with AD. We also confirmed that automatic classification algorithms (SVM) could be helpful to distinguish AD patients from healthy controls. Moreover, the same areas implicated in the pathogenesis of AD were the main parameters driving the classification algorithm. While the patient sample used in this study was relatively small, we expect that using a database of regional volumes derived from MRI scans of a large number of subjects will increase the SVM power of AD patient identification.