862 resultados para wire rod rolling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rolling stock circulation depends on two different problems: the rolling stock assignment and the train routing problems, which up to now have been solved sequentially. We propose a new approach to obtain better and more robust circulations of the rolling stock train units, solving the rolling stock assignment while accounting for the train routing problem. Here robustness means that difficult shunting operations are selectively penalized and propagated delays together with the need for human resources are minimized. This new integrated approach provides a huge model. Then, we solve the integrated model using Benders decomposition, where the main decision is the rolling stock assignment and the train routing is in the second level. For computational reasons we propose a heuristic based on Benders decomposition. Computational experiments show how the current solution operated by RENFE (the main Spanish train operator) can be improved: more robust and efficient solutions are obtained

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Train Timetabling Problem (TTP) has been widely studied for freight and passenger rail systems. A lesser effort has been devoted to the study of high-speed rail systems. A modeling issue that has to be addressed is to model departure time choice of passengers on railway services. Passengers who use these systems attempt to travel at predetermined hours due to their daily life necessities (e.g., commuter trips). We incorporate all these features into TTP focusing on high-speed railway systems. We propose a Rail Scheduling and Rolling Stock (RSch-RS) model for timetable planning of high-speed railway systems. This model is composed of two essential elements: i) an infrastructure model for representing the railway network: it includes capacity constraints of the rail network and the Rolling-Stock constraints; and ii) a demand model that defines how the passengers choose the departure time. The resulting model is a mixed-integer programming model which objective function attempts to maximize the profit for the rail operator

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overarching theme of this thesis is mesoscale optical and optoelectronic design of photovoltaic and photoelectrochemical devices. In a photovoltaic device, light absorption and charge carrier transport are coupled together on the mesoscale, and in a photoelectrochemical device, light absorption, charge carrier transport, catalysis, and solution species transport are all coupled together on the mesoscale. The work discussed herein demonstrates that simulation-based mesoscale optical and optoelectronic modeling can lead to detailed understanding of the operation and performance of these complex mesostructured devices, serve as a powerful tool for device optimization, and efficiently guide device design and experimental fabrication efforts. In-depth studies of two mesoscale wire-based device designs illustrate these principles—(i) an optoelectronic study of a tandem Si|WO3 microwire photoelectrochemical device, and (ii) an optical study of III-V nanowire arrays.

The study of the monolithic, tandem, Si|WO3 microwire photoelectrochemical device begins with development and validation of an optoelectronic model with experiment. This study capitalizes on synergy between experiment and simulation to demonstrate the model’s predictive power for extractable device voltage and light-limited current density. The developed model is then used to understand the limiting factors of the device and optimize its optoelectronic performance. The results of this work reveal that high fidelity modeling can facilitate unequivocal identification of limiting phenomena, such as parasitic absorption via excitation of a surface plasmon-polariton mode, and quick design optimization, achieving over a 300% enhancement in optoelectronic performance over a nominal design for this device architecture, which would be time-consuming and challenging to do via experiment.

The work on III-V nanowire arrays also starts as a collaboration of experiment and simulation aimed at gaining understanding of unprecedented, experimentally observed absorption enhancements in sparse arrays of vertically-oriented GaAs nanowires. To explain this resonant absorption in periodic arrays of high index semiconductor nanowires, a unified framework that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes is developed in the context of silicon, using both analytic theory and electromagnetic simulations. This detailed theoretical understanding is then applied to a simulation-based optimization of light absorption in sparse arrays of GaAs nanowires. Near-unity absorption in sparse, 5% fill fraction arrays is demonstrated via tapering of nanowires and multiple wire radii in a single array. Finally, experimental efforts are presented towards fabrication of the optimized array geometries. A hybrid self-catalyzed and selective area MOCVD growth method is used to establish morphology control of GaP nanowire arrays. Similarly, morphology and pattern control of nanowires is demonstrated with ICP-RIE of InP. Optical characterization of the InP nanowire arrays gives proof of principle that tapering and multiple wire radii can lead to near-unity absorption in sparse arrays of InP nanowires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on a low frequency piezoelectric energy harvester that scavenges energy from a wire carrying an AC current. The harvester is described, fabricated and characterized. The device consists of a silicon cantilever with integrated piezoelectric capacitor and proof-mass that incorporates a permanent magnet. When brought close to an AC current carrying wire, the magnet couples to the AC magnetic field from a wire, causing the cantilever to vibrate and generate power. The measured average power dissipated across an optimal resistive load was 1.5 μW. This was obtained by exciting the device into mechanical resonance using the electro-magnetic field from the 2 A source current. The measurements also reveal that the device has a nonlinear response that is due to a spring hardening mechanism.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A prospective, consecutive series of 106 patients receiving endoscopic anterior scoliosis correction. The aim was to analyse changes in radiographic parameters and rib hump in the two years following surgery. Endoscopic anterior scoliosis correction is a level sparing approach, therefore it is important to assess the amount of decompensation which occurs after surgery. All patients received a single anterior rod and vertebral body screws using a standard compression technique. Cleared disc spaces were packed with either mulched femoral head allograft or rib head/iliac crest autograft. Radiographic parameters (major, instrumented, minor Cobb, T5-T12 kyphosis) and rib hump were measured at 2,6,12 and 24 months after surgery. Paired t-tests and Wilcoxon signed ranks tests were used to assess the statistical significant of changes between adjacent time intervals.----- Results: Mean loss of major curve correction from 2 to 24 months after surgery was 4 degrees. Mean loss of rib hump correction was 1.4 degrees. Mean sagittal kyphosis increased from 27 degrees at 2 months to 30.6 degrees at 24 months. Rod fractures and screw-related complications resulted in several degrees less correction than patients without complications, but overall there was no clinically significant decompensation following complications. The study concluded that there are small changes in deformity measures after endoscopic anterior scoliosis surgery, which are statistically significant but not clinically significant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

John Frazer's architectural work is inspired by living and generative processes. Both evolutionary and revolutionary, it explores informatin ecologies and the dynamics of the spaces between objects. Fuelled by an interest in the cybernetic work of Gordon Pask and Norbert Wiener, and the possibilities of the computer and the "new science" it has facilitated, Frazer and his team of collaborators have conducted a series of experiments that utilize genetic algorithms, cellular automata, emergent behaviour, complexity and feedback loops to create a truly dynamic architecture. Frazer studied at the Architectural Association (AA) in London from 1963 to 1969, and later became unit master of Diploma Unit 11 there. He was subsequently Director of Computer-Aided Design at the University of Ulter - a post he held while writing An Evolutionary Architecture in 1995 - and a lecturer at the University of Cambridge. In 1983 he co-founded Autographics Software Ltd, which pioneered microprocessor graphics. Frazer was awarded a person chair at the University of Ulster in 1984. In Frazer's hands, architecture becomes machine-readable, formally open-ended and responsive. His work as computer consultant to Cedric Price's Generator Project of 1976 (see P84)led to the development of a series of tools and processes; these have resulted in projects such as the Calbuild Kit (1985) and the Universal Constructor (1990). These subsequent computer-orientated architectural machines are makers of architectural form beyond the full control of the architect-programmer. Frazer makes much reference to the multi-celled relationships found in nature, and their ongoing morphosis in response to continually changing contextual criteria. He defines the elements that describe his evolutionary architectural model thus: "A genetic code script, rules for the development of the code, mapping of the code to a virtual model, the nature of the environment for the development of the model and, most importantly, the criteria for selection. In setting out these parameters for designing evolutionary architectures, Frazer goes beyond the usual notions of architectural beauty and aesthetics. Nevertheless his work is not without an aesthetic: some pieces are a frenzy of mad wire, while others have a modularity that is reminiscent of biological form. Algorithms form the basis of Frazer's designs. These algorithms determine a variety of formal results dependent on the nature of the information they are given. His work, therefore, is always dynamic, always evolving and always different. Designing with algorithms is also critical to other architects featured in this book, such as Marcos Novak (see p150). Frazer has made an unparalleled contribution to defining architectural possibilities for the twenty-first century, and remains an inspiration to architects seeking to create responsive environments. Architects were initially slow to pick up on the opportunities that the computer provides. These opportunities are both representational and spatial: computers can help architects draw buildings and, more importantly, they can help architects create varied spaces, both virtual and actual. Frazer's work was groundbreaking in this respect, and well before its time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Banana bunchy top is regarded as the most important viral disease of banana, causing significant yield losses worldwide. The disease is caused by Banana bunchy top virus (BBTV), which is a circular ssDNA virus belonging to the genus Babuvirus in the family Nanoviridae. There are currently few effective control strategies for this and other ssDNA viruses. “In Plant Activation” (InPAct) is a novel technology being developed at QUT for ssDNA virus-activated suicide gene expression. The technology exploits the rolling circle replication mechanism of ssDNA viruses and is based on a unique “split” gene design such that suicide gene expression is only activated in the presence of the viral Rep. This PhD project aimed to develop a BBTV-based InPAct system as a suicide gene strategy to control BBTV. The BBTV-based InPAct vector design requires a BBTV intergenic region (IR) to be embedded within an intron in the gene expression cassette. To ensure that the BBTV IR would not interfere with intron splicing, a TEST vector was initially generated that contained the entire BBTV IR embedded within an intron in a β-glucuronidase (GUS) expression vector. Transient GUS assays in banana embryogenic cell suspensions indicated that cryptic intron splice sites were present within the IR. Transcript analysis revealed two cryptic intron splice sites in the Domain III sequence of the CR-M within the IR. Removal of the CR-M from the TEST vector resulted in an enhancement of GUS expression suggesting that the cryptic intron splice sites had been removed. An InPAct GUS vector was subsequently generated that contained the modified BBTV IR, with the CR-M (minus Domain III) repositioned within the InPAct cassette. Using transient histochemical and fluorometric GUS assays in banana embryogenic cells, the InPAct GUS vector was shown to be activated in the presence of the BBTV Rep. However, the presence of both BBTV Rep and Clink was shown to have a deleterious effect on GUS expression suggesting that these proteins were cytotoxic at the levels expressed. Analysis of replication of the InPAct vectors by Southern hybridisation revealed low levels of InPAct cassette-based episomal DNA released from the vector through the nicking/ligation activity of BBTV Rep. However, Rep-mediated episomal replicons, indicative of rolling circle replication of the released circularised cassettes, were not observed. The inability of the InPAct cassette to be replicated was further investigated. To examine whether the absence of Domain III of the CR-M was responsible, a suite of modified BBTV-based InPAct GUS vectors was constructed that contained the CR-M with the inclusion of Domain III, the CR-M with the inclusion of Domain III and additional upstream IR sequence, or no CR-M. Analysis of replication by Southern hybridisation revealed that neither the presence of Domain III, nor the entire CR-M, had an effect on replication levels. Since the InPAct cassette was significantly larger than the native BBTV genomic components (approximately 1 kb), the effect of InPAct cassette size on replication was also investigated. A suite of size variant BBTV-based vectors was constructed that increased the size of a replication competent cassette to 1.1 kbp through to 2.1 kbp.. Analysis of replication by Southern hybridisation revealed that an increase in vector size above approximately 1.5 - 1.7 kbp resulted in a decrease in replication. Following the demonstration of Rep-mediated release, circularisation and expression from the InPAct GUS vector, an InPAct vector was generated in which the uidA reporter gene was replaced with the ribonuclease-encoding suicide gene, barnase. Initially, a TEST vector was generated to assess the cytotoxicity of Barnase on banana cells. Although transient assays revealed a Barnase-induced cytotoxic effect in banana cells, the expression levels were sub-optimal. An InPAct BARNASE vector was generated and tested for BBTV Rep-activated Barnase expression using transient assays in banana embryogenic cells. High levels of background expression from the InPAct BARNASE vector made it difficult to accurately assess Rep-activated Barnase expression. Analysis of replication by Southern hybridisation revealed low levels of InPAct cassette-based episomal DNA released from the vector but no Rep-mediated episomal replicons indicative of rolling circle replication of the released circularised cassettes were again observed. Despite the inability of the InPAct vectors to replicate to enable high level gene expression, the InPAct BARNASE vector was assessed in planta for BBTV Rep-mediated activation of Barnase expression. Eleven lines of transgenic InPAct BARNASE banana plants were generated by Agrobacterium-mediated transformation and were challenged with viruliferous Pentalonia nigronervosa. At least one clonal plant in each line developed bunchy top symptoms and infection was confirmed by PCR. No localised lesions were observed on any plants, nor was there any localised GUS expression in the one InPAct GUS line challenged with viruliferous aphids. The results presented in this thesis are the first study towards the development of a BBTV-based InPAct system as a Rep-activatable suicide gene expression system to control BBTV. Although further optimisation of the vectors is necessary, the preliminary results suggest that this approach has the potential to be an effective control strategy for BBTV. The use of iterons within the InPAct vectors that are recognised by Reps from different ssDNA plant viruses may provide a broad-spectrum resistance strategy against multiple ssDNA plant viruses. Further, this technology holds great promise as a platform technology for the molecular farming of high-value proteins in vitro or in vivo through expression of the ssDNA virus Rep protein.