910 resultados para weighted linear regression
Resumo:
La régression logistique est un modèle de régression linéaire généralisée (GLM) utilisé pour des variables à expliquer binaires. Le modèle cherche à estimer la probabilité de succès de cette variable par la linéarisation de variables explicatives. Lorsque l’objectif est d’estimer le plus précisément l’impact de différents incitatifs d’une campagne marketing (coefficients de la régression logistique), l’identification de la méthode d’estimation la plus précise est recherchée. Nous comparons, avec la méthode MCMC d’échantillonnage par tranche, différentes densités a priori spécifiées selon différents types de densités, paramètres de centralité et paramètres d’échelle. Ces comparaisons sont appliquées sur des échantillons de différentes tailles et générées par différentes probabilités de succès. L’estimateur du maximum de vraisemblance, la méthode de Gelman et celle de Genkin viennent compléter le comparatif. Nos résultats démontrent que trois méthodes d’estimations obtiennent des estimations qui sont globalement plus précises pour les coefficients de la régression logistique : la méthode MCMC d’échantillonnage par tranche avec une densité a priori normale centrée en 0 de variance 3,125, la méthode MCMC d’échantillonnage par tranche avec une densité Student à 3 degrés de liberté aussi centrée en 0 de variance 3,125 ainsi que la méthode de Gelman avec une densité Cauchy centrée en 0 de paramètre d’échelle 2,5.
Resumo:
Chaque jour, des décisions doivent être prises quant à la quantité d'hydroélectricité produite au Québec. Ces décisions reposent sur la prévision des apports en eau dans les bassins versants produite à l'aide de modèles hydrologiques. Ces modèles prennent en compte plusieurs facteurs, dont notamment la présence ou l'absence de neige au sol. Cette information est primordiale durant la fonte printanière pour anticiper les apports à venir, puisqu'entre 30 et 40% du volume de crue peut provenir de la fonte du couvert nival. Il est donc nécessaire pour les prévisionnistes de pouvoir suivre l'évolution du couvert de neige de façon quotidienne afin d'ajuster leurs prévisions selon le phénomène de fonte. Des méthodes pour cartographier la neige au sol sont actuellement utilisées à l'Institut de recherche d'Hydro-Québec (IREQ), mais elles présentent quelques lacunes. Ce mémoire a pour objectif d'utiliser des données de télédétection en micro-ondes passives (le gradient de températures de brillance en position verticale (GTV)) à l'aide d'une approche statistique afin de produire des cartes neige/non-neige et d'en quantifier l'incertitude de classification. Pour ce faire, le GTV a été utilisé afin de calculer une probabilité de neige quotidienne via les mélanges de lois normales selon la statistique bayésienne. Par la suite, ces probabilités ont été modélisées à l'aide de la régression linéaire sur les logits et des cartographies du couvert nival ont été produites. Les résultats des modèles ont été validés qualitativement et quantitativement, puis leur intégration à Hydro-Québec a été discutée.
Resumo:
Dans une turbine hydraulique, la rotation des aubes dans l’eau crée une zone de basse pression, amenant l’eau à passer de l’état liquide à l’état gazeux. Ce phénomène de changement de phase est appelé cavitation et est similaire à l’ébullition. Lorsque les cavités de vapeur formées implosent près des parois, il en résulte une érosion sévère des matériaux, accélérant de façon importante la dégradation de la turbine. Un système de détection de l’érosion de cavitation à l’aide de mesures vibratoires, employable sur les turbines en opération, a donc été installé sur quatre groupes turbine-alternateur d’une centrale et permet d’estimer précisément le taux d’érosion en kg/ 10 000 h. Le présent projet vise à répondre à deux objectifs principaux. Premièrement, étudier le comportement de la cavitation sur un groupe turbine-alternateur cible et construire un modèle statistique, dans le but de prédire la variable cavitation en fonction des variables opératoires (tels l’ouverture de vannage, le débit, les niveaux amont et aval, etc.). Deuxièmement, élaborer une méthodologie permettant la reproductibilité de l’étude à d’autres sites. Une étude rétrospective sera effectuée et on se concentrera sur les données disponibles depuis la mise à jour du système en 2010. Des résultats préliminaires ont mis en évidence l’hétérogénéité du comportement de cavitation ainsi que des changements entre la relation entre la cavitation et diverses variables opératoires. Nous nous proposons de développer un modèle probabiliste adapté, en utilisant notamment le regroupement hiérarchique et des modèles de régression linéaire multiple.
Resumo:
Contexte: L’arthrite juvénile idiopathique (AJI) est l’une des maladies chroniques auto-immune les plus répandues chez les enfants et est caractérisée par des enflures articulaires (maladie active), de la douleur, de la fatigue et des raideurs matinales pouvant restreindre leur niveau de participation aux activités quotidiennes (par exemple: les loisirs, l’activité physique, la mobilité et les soins personnels) à la maison comme à l’école. Participer aux activités de loisirs et à l’activité physique a des bienfaits au niveau de la santé et du développement de tous les enfants et démontrent aussi des effets positifs qui réduisent les symptômes des maladies chroniques telle l’AJI. Malgré ces bienfaits la participation aux loisirs chez les jeunes avec l’AJI demeure largement sous-étudiée. Objectifs: Cette étude vise à évaluer le niveau de participation aux loisirs et à l’activité physique chez les enfants et les adolescents atteints d’AJI, ainsi qu’à identifier les facteurs liés à la maladie, la personne et l’environnement. Méthodes : L’évaluation du niveau de participation et l’exploration des facteurs associés aux loisirs et à l’activité physique ont été complétés par l’entremise d’une revue systématique de la littérature, l’analyse de données d’un échantillon national représentatif d’enfants canadiens atteints d’arthrite âgés entre 5 et 14 ans (npondéré = 4350), ainsi que l’analyse standardisée du niveau de participation aux loisirs à l’aide du Children’s Assessment of Participation and Enjoyment (n=107) et la mesure objective de l’activité physique par accéléromètre (n=76) auprès d’un échantillon d’enfants (âgés entre 8 et 11 ans ) et d’adolescents (âgés entre 12 et 17 ans) suivis en clinique de rhumatologie à l’hôpital de Montréal pour enfants, Centre Universitaire de Santé McGill. Les résultats cliniques ont été comparés à des données normatives, ainsi qu’à un groupe contrôle sans AJI. Nous avons exploré les facteurs associés avec le niveau de participation aux loisirs et à l’activité physique en utilisant les modèles de régression linéaire multiple et l’analyse hiérarchique. Résultats : Les enfants et les adolescents atteints d’AJI participent à une multitude d’activités de loisirs; cependant ils sont moins souvent impliqués dans des activités physiques et de raffinement en comparaison aux autres types d’activités de loisirs. Ceux avec l’AJI étaient en général moins actifs que leurs pairs sans arthrite et la plupart n’atteignaient pas les recommandations nationales d’activité physique. Les garçons avec l’AJI participent plus souvent à des activités physiques et moins aux activités sociales, de raffinement et de développement de soi en comparaison avec les filles ayant l’AJI. En général, être un garçon, être plus âgé, avoir une meilleure motivation pour participer aux activités de motricité globale, avoir un statut socio-économique plus élevé et être d’origine culturelle canadienne sont associés à un niveau de participation plus élevé aux activités physiques. La préférence pour les activités de raffinement, un niveau d’éducation maternelle plus élevé et être une fille étaient associés à un niveau de participation plus élevé aux activités de raffinement. Conclusion: La participation aux loisirs et à l’activité physique en AJI est un concept complexe et semble surtout être expliqué par des facteurs personnels et environnementaux. L’identification des facteurs associés aux loisirs et à l’activité physique est très importante en AJI puisqu’elle peut permettre aux professionnels de la santé de développer des interventions significatives basées sur les activités préférées des enfants, améliorer l’observance au traitement et promouvoir des habitudes de vie saine.
Resumo:
Il est admis que la maladie de Crohn (MC) résulte de facteurs immunologiques, environnementaux et génétiques. SIGIRR, un récepteur anti-inflammatoire, n’a jamais été étudié dans le contexte de la MC, et de nombreuses découvertes à son sujet ont mené plusieurs à s’intéresser quant à son utilité dans l’atténuation de maladies inflammatoires. Récemment, l’IL-37 a été identifié comme ligand d’un complexe formé de SIGIRR-IL-18Rα. SIGIRR et l’IL-37 pourraient alors être des acteurs de la dérégulation de l’inflammation retrouvée chez la MC. Nous les avons étudiés dans le contexte de la MC pédiatrique, afin d’y caractériser leurs effets. Nous avons identifié une diminution de l’expression de SIGIRR sur certains types de cellules immunitaires. De plus, les personnes atteintes de la MC ont des concentrations de protéines altérées, soit SIGIRR soluble, l’IL-37, l’IL-18BP, et l’IL-18, et tendent à revenir à la normale lorsque l’inflammation est contrôlée par médication. De plus, la concentration de l’IL-18 libre suit le même patron. Par analyse de régression linéaire de SIGIRR soluble et l’IL-37, de l’IL-18BP et l’IL-18, ainsi que l’IL-37 et l’IL-18, des tendances divergentes ont été identifiées entre les patients non traités aux contrôles et patients traités. Nos résultats suggèrent que le système IL-37-SIGIRR est compromis chez les patients de la MC. Étant donné que ce système est un facteur crucial dans la régulation négative de l’inflammation, il sera intéressant de déterminer si SIGIRR et l’IL-37 peuvent constituer des cibles thérapeutiques importantes dans l’atténuation et la résolution de l’inflammation chez les patients atteints de la MC.
Resumo:
The Doctoral thesis focuses on the factors that influence the weather and climate over Peninsular Indias. The first chapter provides a general introduction about the climatic features over peninsular India, various factors dealt in subsequent chapters, such as solar forcing on climate, SST variability in the northern Indian Ocean and its influence on Indian monsoon, moisture content of the atmosphere and its importance in the climate system, empirical formulation of regression forecast of climate and some aspects of regional climate modeling. Chapter 2 deals with the variability in the vertically integrated moisture (VIM) over Peninsular India on various time scales. The third Chapter discusses the influence of solar activity in the low frequency variability in the rainfall of Peninsular India. The study also investigates the influence of solar activity on the horizontal and vertical components of wind and the difference in the forcing before and after the so-called regime shift in the climate system before and after mid-1970s.In Chapter 4 on Peninsular Indian Rainfall and its association with meteorological and oceanic parameters over adjoining oceanic region, a linear regression model was developed and tested for the seasonal rainfall prediction of Peninsular India.
Resumo:
In a recent paper A. S. Johal and D. J. Dunstan [Phys. Rev. B 73, 024106 (2006)] have applied multivariate linear regression analysis to the published data of the change in ultrasonic velocity with applied stress. The aim is to obtain the best estimates for the third-order elastic constants in cubic materials. From such an analysis they conclude that uniaxial stress data on metals turns out to be nearly useless by itself. The purpose of this comment is to point out that by a proper analysis of uniaxial stress data it is possible to obtain reliable values of third-order elastic constants in cubic metals and alloys. Cu-based shape memory alloys are used as an illustrative example.
Resumo:
The country has witnessed tremendous increase in the vehicle population and increased axle loading pattern during the last decade, leaving its road network overstressed and leading to premature failure. The type of deterioration present in the pavement should be considered for determining whether it has a functional or structural deficiency, so that appropriate overlay type and design can be developed. Structural failure arises from the conditions that adversely affect the load carrying capability of the pavement structure. Inadequate thickness, cracking, distortion and disintegration cause structural deficiency. Functional deficiency arises when the pavement does not provide a smooth riding surface and comfort to the user. This can be due to poor surface friction and texture, hydro planning and splash from wheel path, rutting and excess surface distortion such as potholes, corrugation, faulting, blow up, settlement, heaves etc. Functional condition determines the level of service provided by the facility to its users at a particular time and also the Vehicle Operating Costs (VOC), thus influencing the national economy. Prediction of the pavement deterioration is helpful to assess the remaining effective service life (RSL) of the pavement structure on the basis of reduction in performance levels, and apply various alternative designs and rehabilitation strategies with a long range funding requirement for pavement preservation. In addition, they can predict the impact of treatment on the condition of the sections. The infrastructure prediction models can thus be classified into four groups, namely primary response models, structural performance models, functional performance models and damage models. The factors affecting the deterioration of the roads are very complex in nature and vary from place to place. Hence there is need to have a thorough study of the deterioration mechanism under varied climatic zones and soil conditions before arriving at a definite strategy of road improvement. Realizing the need for a detailed study involving all types of roads in the state with varying traffic and soil conditions, the present study has been attempted. This study attempts to identify the parameters that affect the performance of roads and to develop performance models suitable to Kerala conditions. A critical review of the various factors that contribute to the pavement performance has been presented based on the data collected from selected road stretches and also from five corporations of Kerala. These roads represent the urban conditions as well as National Highways, State Highways and Major District Roads in the sub urban and rural conditions. This research work is a pursuit towards a study of the road condition of Kerala with respect to varying soil, traffic and climatic conditions, periodic performance evaluation of selected roads of representative types and development of distress prediction models for roads of Kerala. In order to achieve this aim, the study is focused into 2 parts. The first part deals with the study of the pavement condition and subgrade soil properties of urban roads distributed in 5 Corporations of Kerala; namely Thiruvananthapuram, Kollam, Kochi, Thrissur and Kozhikode. From selected 44 roads, 68 homogeneous sections were studied. The data collected on the functional and structural condition of the surface include pavement distress in terms of cracks, potholes, rutting, raveling and pothole patching. The structural strength of the pavement was measured as rebound deflection using Benkelman Beam deflection studies. In order to collect the details of the pavement layers and find out the subgrade soil properties, trial pits were dug and the in-situ field density was found using the Sand Replacement Method. Laboratory investigations were carried out to find out the subgrade soil properties, soil classification, Atterberg limits, Optimum Moisture Content, Field Moisture Content and 4 days soaked CBR. The relative compaction in the field was also determined. The traffic details were also collected by conducting traffic volume count survey and axle load survey. From the data thus collected, the strength of the pavement was calculated which is a function of the layer coefficient and thickness and is represented as Structural Number (SN). This was further related to the CBR value of the soil and the Modified Structural Number (MSN) was found out. The condition of the pavement was represented in terms of the Pavement Condition Index (PCI) which is a function of the distress of the surface at the time of the investigation and calculated in the present study using deduct value method developed by U S Army Corps of Engineers. The influence of subgrade soil type and pavement condition on the relationship between MSN and rebound deflection was studied using appropriate plots for predominant types of soil and for classified value of Pavement Condition Index. The relationship will be helpful for practicing engineers to design the overlay thickness required for the pavement, without conducting the BBD test. Regression analysis using SPSS was done with various trials to find out the best fit relationship between the rebound deflection and CBR, and other soil properties for Gravel, Sand, Silt & Clay fractions. The second part of the study deals with periodic performance evaluation of selected road stretches representing National Highway (NH), State Highway (SH) and Major District Road (MDR), located in different geographical conditions and with varying traffic. 8 road sections divided into 15 homogeneous sections were selected for the study and 6 sets of continuous periodic data were collected. The periodic data collected include the functional and structural condition in terms of distress (pothole, pothole patch, cracks, rutting and raveling), skid resistance using a portable skid resistance pendulum, surface unevenness using Bump Integrator, texture depth using sand patch method and rebound deflection using Benkelman Beam. Baseline data of the study stretches were collected as one time data. Pavement history was obtained as secondary data. Pavement drainage characteristics were collected in terms of camber or cross slope using camber board (slope meter) for the carriage way and shoulders, availability of longitudinal side drain, presence of valley, terrain condition, soil moisture content, water table data, High Flood Level, rainfall data, land use and cross slope of the adjoining land. These data were used for finding out the drainage condition of the study stretches. Traffic studies were conducted, including classified volume count and axle load studies. From the field data thus collected, the progression of each parameter was plotted for all the study roads; and validated for their accuracy. Structural Number (SN) and Modified Structural Number (MSN) were calculated for the study stretches. Progression of the deflection, distress, unevenness, skid resistance and macro texture of the study roads were evaluated. Since the deterioration of the pavement is a complex phenomena contributed by all the above factors, pavement deterioration models were developed as non linear regression models, using SPSS with the periodic data collected for all the above road stretches. General models were developed for cracking progression, raveling progression, pothole progression and roughness progression using SPSS. A model for construction quality was also developed. Calibration of HDM–4 pavement deterioration models for local conditions was done using the data for Cracking, Raveling, Pothole and Roughness. Validation was done using the data collected in 2013. The application of HDM-4 to compare different maintenance and rehabilitation options were studied considering the deterioration parameters like cracking, pothole and raveling. The alternatives considered for analysis were base alternative with crack sealing and patching, overlay with 40 mm BC using ordinary bitumen, overlay with 40 mm BC using Natural Rubber Modified Bitumen and an overlay of Ultra Thin White Topping. Economic analysis of these options was done considering the Life Cycle Cost (LCC). The average speed that can be obtained by applying these options were also compared. The results were in favour of Ultra Thin White Topping over flexible pavements. Hence, Design Charts were also plotted for estimation of maximum wheel load stresses for different slab thickness under different soil conditions. The design charts showed the maximum stress for a particular slab thickness and different soil conditions incorporating different k values. These charts can be handy for a design engineer. Fuzzy rule based models developed for site specific conditions were compared with regression models developed using SPSS. The Riding Comfort Index (RCI) was calculated and correlated with unevenness to develop a relationship. Relationships were developed between Skid Number and Macro Texture of the pavement. The effort made through this research work will be helpful to highway engineers in understanding the behaviour of flexible pavements in Kerala conditions and for arriving at suitable maintenance and rehabilitation strategies. Key Words: Flexible Pavements – Performance Evaluation – Urban Roads – NH – SH and other roads – Performance Models – Deflection – Riding Comfort Index – Skid Resistance – Texture Depth – Unevenness – Ultra Thin White Topping
Resumo:
Es werde das lineare Regressionsmodell y = X b + e mit den ueblichen Bedingungen betrachtet. Weiter werde angenommen, dass der Parametervektor aus einem Ellipsoid stammt. Ein optimaler Schaetzer fuer den Parametervektor ist durch den Minimax-Schaetzer gegeben. Nach der entscheidungstheoretischen Formulierung des Minimax-Schaetzproblems werden mit dem Bayesschen Ansatz, Spektralen Methoden und der Darstellung von Hoffmann und Laeuter Wege zur Bestimmung des Minimax- Schaetzers dargestellt und in Beziehung gebracht. Eine Betrachtung von Modellen mit drei Einflussgroeßen und gemeinsamen Eigenvektor fuehrt zu einer Strukturierung des Problems nach der Vielfachheit des maximalen Eigenwerts. Die Bestimmung des Minimax-Schaetzers in einem noch nicht geloesten Fall kann auf die Bestimmung einer Nullstelle einer nichtlinearen reellwertigen Funktion gefuehrt werden. Es wird ein Beispiel gefunden, in dem die Nullstelle nicht durch Radikale angegeben werden kann. Durch das Intervallschachtelungs-Prinzip oder Newton-Verfahren ist die numerische Bestimmung der Nullstelle moeglich. Durch Entwicklung einer Fixpunktgleichung aus der Darstellung von Hoffmann und Laeuter war es in einer Simulation moeglich die angestrebten Loesungen zu finden.
Resumo:
Es ist bekannt, dass die Dichte eines gelösten Stoffes die Richtung und die Stärke seiner Bewegung im Untergrund entscheidend bestimmen kann. Eine Vielzahl von Untersuchungen hat gezeigt, dass die Verteilung der Durchlässigkeiten eines porösen Mediums diese Dichteffekte verstärken oder abmindern kann. Wie sich dieser gekoppelte Effekt auf die Vermischung zweier Fluide auswirkt, wurde in dieser Arbeit untersucht und dabei das experimentelle sowohl mit dem numerischen als auch mit dem analytischen Modell gekoppelt. Die auf der Störungstheorie basierende stochastische Theorie der macrodispersion wurde in dieser Arbeit für den Fall der transversalen Makodispersion. Für den Fall einer stabilen Schichtung wurde in einem Modelltank (10m x 1.2m x 0.1m) der Universität Kassel eine Serie sorgfältig kontrollierter zweidimensionaler Experimente an einem stochastisch heterogenen Modellaquifer durchgeführt. Es wurden Versuchsreihen mit variierenden Konzentrationsdifferenzen (250 ppm bis 100 000 ppm) und Strömungsgeschwindigkeiten (u = 1 m/ d bis 8 m/d) an drei verschieden anisotrop gepackten porösen Medien mit variierender Varianzen und Korrelationen der lognormal verteilten Permeabilitäten durchgeführt. Die stationäre räumliche Konzentrationsausbreitung der sich ausbreitenden Salzwasserfahne wurde anhand der Leitfähigkeit gemessen und aus der Höhendifferenz des 84- und 16-prozentigen relativen Konzentrationsdurchgang die Dispersion berechnet. Parallel dazu wurde ein numerisches Modell mit dem dichteabhängigen Finite-Elemente-Strömungs- und Transport-Programm SUTRA aufgestellt. Mit dem kalibrierten numerischen Modell wurden Prognosen für mögliche Transportszenarien, Sensitivitätsanalysen und stochastische Simulationen nach der Monte-Carlo-Methode durchgeführt. Die Einstellung der Strömungsgeschwindigkeit erfolgte - sowohl im experimentellen als auch im numerischen Modell - über konstante Druckränder an den Ein- und Auslauftanks. Dabei zeigte sich eine starke Sensitivität der räumlichen Konzentrationsausbreitung hinsichtlich lokaler Druckvariationen. Die Untersuchungen ergaben, dass sich die Konzentrationsfahne mit steigendem Abstand von der Einströmkante wellenförmig einem effektiven Wert annähert, aus dem die Makrodispersivität ermittelt werden kann. Dabei zeigten sich sichtbare nichtergodische Effekte, d.h. starke Abweichungen in den zweiten räumlichen Momenten der Konzentrationsverteilung der deterministischen Experimente von den Erwartungswerten aus der stochastischen Theorie. Die transversale Makrodispersivität stieg proportional zur Varianz und Korrelation der lognormalen Permeabilitätsverteilung und umgekehrt proportional zur Strömungsgeschwindigkeit und Dichtedifferenz zweier Fluide. Aus dem von Welty et al. [2003] mittels Störungstheorie entwickelten dichteabhängigen Makrodispersionstensor konnte in dieser Arbeit die stochastische Formel für die transversale Makrodispersion weiter entwickelt und - sowohl experimentell als auch numerisch - verifiziert werden.
Resumo:
Summary: Productivity, botanical composition and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. As these attributes can vary considerably within a field, a non-destructive method of detection while doing other tasks would facilitate a more targeted management of crops, forage and nutrients in the soil-plant-animal system. This study was undertaken to explore the potential of field spectral measurements for a non destructive prediction of dry matter (DM) yield, legume proportion in the sward, metabolizable energy (ME), ash content, crude protein (CP) and acid detergent fiber (ADF) of legume-grass mixtures. Two experiments were conducted in a greenhouse under controlled conditions which allowed collecting spectral measurements which were free from interferences such as wind, passing clouds and changing angles of solar irradiation. In a second step this initial investigation was evaluated in the field by a two year experiment with the same legume-grass swards. Several techniques for analysis of the hyperspectral data set were examined in this study: four vegetation indices (VIs): simple ratio (SR), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and red edge position (REP), two-waveband reflectance ratios, modified partial least squares (MPLS) regression and stepwise multiple linear regression (SMLR). The results showed the potential of field spectroscopy and proved its usefulness for the prediction of DM yield, ash content and CP across a wide range of legume proportion and growth stage. In all investigations prediction accuracy of DM yield, ash content and CP could be improved by legume-specific calibrations which included mixtures and pure swards of perennial ryegrass and of the respective legume species. The comparison between the greenhouse and the field experiments showed that the interaction between spectral reflectance and weather conditions as well as incidence angle of light interfered with an accurate determination of DM yield. Further research is hence needed to improve the validity of spectral measurements in the field. Furthermore, the developed models should be tested on varying sites and vegetation periods to enhance the robustness and portability of the models to other environmental conditions.
Resumo:
Climate change and variability in sub-Saharan West Africa is expected to have negative consequences for crop and livestock farming due to the strong dependence of these sectors on rainfall and natural resources, and the low adaptive capacity of crops farmers, agro-pastoralist and pastoralists in the region. The objective of this PhD research was to investigate the anticipated impacts of expected future climate change and variability on nutrition and grazing management of livestock in the prevailing extensive agro-pastoral and pastoral systems of the Sahelian and Sudanian zones of Burkina Faso. To achieve this, three studies were undertaken in selected village territories (100 km² each) in the southern Sahelian (Taffogo), northern Sudanian (Nobere, Safane) and southern Sudanian (Sokouraba) zone of the country during 2009 and 2010. The choice of two villages in the northern Sudanian zone was guided by the dichotomy between intense agricultural land use and high population density near Safane, and lower agricultural land use in the tampon zone between the village of Nobere and the National Park Kaboré Tambi of Pô. Using global positioning and geographical information systems tools, the spatio-temporal variation in the use of grazing areas by cattle, sheep and goats, and in their foraging behaviour in the four villages was assessed by monitoring three herds each per species during a one-year cycle (Chapter 2). Maximum itinerary lengths (km/d) were observed in the hot dry season (March-May); they were longer for sheep (18.8) and cattle (17.4) than for goats (10.5, p<0.05). Daily total grazing time spent on pasture ranged from 6 - 11 h with cattle staying longer on pasture than small ruminants (p<0.05). Feeding time accounted for 52% - 72% of daily time on pasture, irrespective of species. Herds spent longer time on pasture and walked farther distances in the southern Sahelian than the two Sudanian zones (p<0.01), while daily feeding time was longer in the southern Sudanian than in the other two zones (p>0.05). Proportional time spent resting decreased from the rainy (June - October) to the cool (November - February) and hot dry season (p<0.05), while in parallel the proportion of walking time increased. Feeding time of all species was to a significantly high proportion spent on wooded land (tree crown cover 5-10%, or shrub cover >10%) in the southern Sahelian zone, and on forest land (tree crown cover >10%) in the two Sudanian zones, irrespective of season. It is concluded that with the expansion of cropland in the whole region, remaining islands of wooded land, including also fields fallowed for three or more years with their considerable shrub cover, are particularly valuable pasturing areas for ruminant stock. Measures must be taken that counteract the shrinking of wooded land and forests across the whole region, including also active protection and (re)establishment of drought-tolerant fodder trees. Observation of the selection behaviour of the above herds of cattle and small ruminant as far as browse species were concerned, and interviews with 75 of Fulani livestock keepers on use of browse as feed by their ruminant stock and as remedies for animal disease treatment was undertaken (Chapter 3) in order to evaluate the consequence of climate change for the contribution of browse to livestock nutrition and animal health in the extensive grazing-based livestock systems. The results indicated that grazing cattle and small ruminants do make considerable use of browse species on pasture across the studied agro-ecological zones. Goats spent more time (p<0.01) feeding on browse species than sheep and cattle, which spent a low to moderate proportion of their feeding time on browsing in any of the study sites. As far as the agro-ecological zones were concerned, the contribution of browse species to livestock nutrition was more important in the southern Sahelian and northern Sudanian zone than the southern Sudanian zone, and this contribution is higher during the cold and hot dry season than during the rainy season. A total of 75 browse species were selected on pasture year around, whereby cattle strongly preferred Afzelia africana, Pterocarpus erinaceus and Piliostigma sp., while sheep and goats primarily fed on Balanites aegyptiaca, Ziziphus mauritiana and Acacia sp. Crude protein concentration (in DM) of pods or fruits of the most important browse species selected by goats, sheep and cattle ranged from 7% to 13% for pods, and from 10% to 18% for foliage. The concentration of digestible organic matter of preferred browse species mostly ranged from 40% to 60%, and the concentrations of total phenols, condensed tannins and acid detergent lignin were low. Linear regression analyses showed that browse preference on pasture is strongly related to its contents (% of DM) of CP, ADF, NDF and OM digestibility. Interviewed livestock keepers reported that browse species are increasingly use by their grazing animals, while for animal health care use of tree- and shrub-based remedies decreased over the last two decades. It is concluded that due to climate change with expected negative impact on the productivity of the herbaceous layer of communal pastures browse fodder will gain in importance for animal nutrition. Therefore re-establishment and dissemination of locally adapted browse species preferred by ruminants is needed to increase the nutritional situation of ruminant stock in the region and contribute to species diversity and soil fertility restoration in degraded pasture areas. In Chapter 4 a combination of household surveys and participatory research approaches was used in the four villages, and additionally in the village of Zogoré (southern Sahelian zone) and of Karangasso Vigué (northern Sudanian zone) to investigate pastoralists’ (n= 76) and agro-pastoralists’ (n= 83) perception of climate change, and their adaptation strategies in crop and livestock production at farm level. Across the three agro-ecological zones, the majority of the interviewees perceived an increase in maximum day temperatures and decrease of total annual rainfall over the last two decades. Perceptions of change in climate patterns were in line with meteorological data for increased temperatures while for total rainfall farmers’ views contrasted the rainfall records which showed a slight increase of precipitation. According to all interviewees climate change and variability have negative impacts on their crop and animal husbandry, and most of them already adopted some coping and adaptation strategies at farm level to secure their livelihoods and reduce negative impacts on their farming system. Although these strategies are valuable and can help crop and livestock farmers to cope with the recurrent droughts and climate variability, they are not effective against expected extreme climate events. Governmental and non-governmental organisations should develop effective policies and strategies at local, regional and national level to support farmers in their endeavours to cope with climate change phenomena; measures should be site-specific and take into account farmers’ experiences and strategies already in place.
Resumo:
Web services from different partners can be combined to applications that realize a more complex business goal. Such applications built as Web service compositions define how interactions between Web services take place in order to implement the business logic. Web service compositions not only have to provide the desired functionality but also have to comply with certain Quality of Service (QoS) levels. Maximizing the users' satisfaction, also reflected as Quality of Experience (QoE), is a primary goal to be achieved in a Service-Oriented Architecture (SOA). Unfortunately, in a dynamic environment like SOA unforeseen situations might appear like services not being available or not responding in the desired time frame. In such situations, appropriate actions need to be triggered in order to avoid the violation of QoS and QoE constraints. In this thesis, proper solutions are developed to manage Web services and Web service compositions with regard to QoS and QoE requirements. The Business Process Rules Language (BPRules) was developed to manage Web service compositions when undesired QoS or QoE values are detected. BPRules provides a rich set of management actions that may be triggered for controlling the service composition and for improving its quality behavior. Regarding the quality properties, BPRules allows to distinguish between the QoS values as they are promised by the service providers, QoE values that were assigned by end-users, the monitored QoS as measured by our BPR framework, and the predicted QoS and QoE values. BPRules facilitates the specification of certain user groups characterized by different context properties and allows triggering a personalized, context-aware service selection tailored for the specified user groups. In a service market where a multitude of services with the same functionality and different quality values are available, the right services need to be selected for realizing the service composition. We developed new and efficient heuristic algorithms that are applied to choose high quality services for the composition. BPRules offers the possibility to integrate multiple service selection algorithms. The selection algorithms are applicable also for non-linear objective functions and constraints. The BPR framework includes new approaches for context-aware service selection and quality property predictions. We consider the location information of users and services as context dimension for the prediction of response time and throughput. The BPR framework combines all new features and contributions to a comprehensive management solution. Furthermore, it facilitates flexible monitoring of QoS properties without having to modify the description of the service composition. We show how the different modules of the BPR framework work together in order to execute the management rules. We evaluate how our selection algorithms outperform a genetic algorithm from related research. The evaluation reveals how context data can be used for a personalized prediction of response time and throughput.
Resumo:
The research of this thesis dissertation covers developments and applications of short-and long-term climate predictions. The short-term prediction emphasizes monthly and seasonal climate, i.e. forecasting from up to the next month over a season to up to a year or so. The long-term predictions pertain to the analysis of inter-annual- and decadal climate variations over the whole 21st century. These two climate prediction methods are validated and applied in the study area, namely, Khlong Yai (KY) water basin located in the eastern seaboard of Thailand which is a major industrial zone of the country and which has been suffering from severe drought and water shortage in recent years. Since water resources are essential for the further industrial development in this region, a thorough analysis of the potential climate change with its subsequent impact on the water supply in the area is at the heart of this thesis research. The short-term forecast of the next-season climate, such as temperatures and rainfall, offers a potential general guideline for water management and reservoir operation. To that avail, statistical models based on autoregressive techniques, i.e., AR-, ARIMA- and ARIMAex-, which includes additional external regressors, and multiple linear regression- (MLR) models, are developed and applied in the study region. Teleconnections between ocean states and the local climate are investigated and used as extra external predictors in the ARIMAex- and the MLR-model and shown to enhance the accuracy of the short-term predictions significantly. However, as the ocean state – local climate teleconnective relationships provide only a one- to four-month ahead lead time, the ocean state indices can support only a one-season-ahead forecast. Hence, GCM- climate predictors are also suggested as an additional predictor-set for a more reliable and somewhat longer short-term forecast. For the preparation of “pre-warning” information for up-coming possible future climate change with potential adverse hydrological impacts in the study region, the long-term climate prediction methodology is applied. The latter is based on the downscaling of climate predictions from several single- and multi-domain GCMs, using the two well-known downscaling methods SDSM and LARS-WG and a newly developed MLR-downscaling technique that allows the incorporation of a multitude of monthly or daily climate predictors from one- or several (multi-domain) parent GCMs. The numerous downscaling experiments indicate that the MLR- method is more accurate than SDSM and LARS-WG in predicting the recent past 20th-century (1971-2000) long-term monthly climate in the region. The MLR-model is, consequently, then employed to downscale 21st-century GCM- climate predictions under SRES-scenarios A1B, A2 and B1. However, since the hydrological watershed model requires daily-scale climate input data, a new stochastic daily climate generator is developed to rescale monthly observed or predicted climate series to daily series, while adhering to the statistical and geospatial distributional attributes of observed (past) daily climate series in the calibration phase. Employing this daily climate generator, 30 realizations of future daily climate series from downscaled monthly GCM-climate predictor sets are produced and used as input in the SWAT- distributed watershed model, to simulate future streamflow and other hydrological water budget components in the study region in a multi-realization manner. In addition to a general examination of the future changes of the hydrological regime in the KY-basin, potential future changes of the water budgets of three main reservoirs in the basin are analysed, as these are a major source of water supply in the study region. The results of the long-term 21st-century downscaled climate predictions provide evidence that, compared with the past 20th-reference period, the future climate in the study area will be more extreme, particularly, for SRES A1B. Thus, the temperatures will be higher and exhibit larger fluctuations. Although the future intensity of the rainfall is nearly constant, its spatial distribution across the region is partially changing. There is further evidence that the sequential rainfall occurrence will be decreased, so that short periods of high intensities will be followed by longer dry spells. This change in the sequential rainfall pattern will also lead to seasonal reductions of the streamflow and seasonal changes (decreases) of the water storage in the reservoirs. In any case, these predicted future climate changes with their hydrological impacts should encourage water planner and policy makers to develop adaptation strategies to properly handle the future water supply in this area, following the guidelines suggested in this study.
Resumo:
Cambios en la PaO2 se correlacionan de manera positiva con cambios en la SO2 permitiendo determinar la severidad de la hipoxemia. La búsqueda de un predictor que de forma no invasiva detecte pacientes con mayor compromiso pulmonar ha ganando auge; estableciendo los grados de hipoxemia moderada o severa como criterios para LPA y SDRA, a partir de los valores de PaO2/FiO2 y su correlación con la SO2/FiO2. No se conocen los valores de SO2/FiO2 que a más de 2500msnm permitan identificar la severidad de la hipoxemia en pediatría. Metodología: estudio de correlación y predicción en pacientes de un mes a 18 años de edad admitidos a UCIP, con soporte ventilatorio mecánico y análisis de gases arteriales seriados en dos Hospitales de referencia. Análisis de relación lineal y determinación de la correlación SOFiO2 y PaFiO2 a partir de 430 mediciones. Resultados: el estudio mostro una media para PaO2/FiO2 de 192,12 (DS+75,62) y para SO2/FiO2 de 208,61 (DS+62,79). La correlación SO2/FiO2 y Pa/FiO2 fue positiva y moderada-alta (r= 0,702;p<0.01). A partir de la regresión lineal entre las variables se obtuvo la ecuación de determinación PaO2/FiO2 = (0.92xSO2/FIO2) - 12, con sensibilidad y especificidad de 76% para detectar hipoxemia severa (SO2/FiO2<231), y sensibilidad de 74% y especificidad de 71% para hipoxemia moderada (SO2/FiO2<340). Discusión: los hallazgos obtenidos son muy útiles desde el punto de vista clínico para detectar rápidamente pacientes con hipoxemia moderada y severa, con riesgo potencial de deterioro, cuando no se dispone de línea arterial ó gases arteriales.