857 resultados para variable amplitude loading
Resumo:
The aim of this study was to evaluate the survival of single dental implants subjected to immediate function. Twelve patients with edentulous areas in the posterior mandible were included in the study. All received at least one regular platform dental implant (3.75mm×11mm or 3.75mm×13mm). Clinical and radiographic parameters were evaluated. The survival rate after 12 months was 83.3%. The implants showed no clinical mobility, had implant stability quotient values (ISQ; Osstell) around 70, bone loss of up to 2mm, and a probing depth of ≤3mm. Although the posterior mandible is an area in which the immediate loading of dental implants should be performed with caution, this treatment presented a good success rate in the present study sample.
Resumo:
Stair ascent is an activity that exacerbates symptoms of individuals with patellofemoral pain. The discomfort associated with this activity usually results in gait modification such as reduced knee flexion in an attempt to reduce pain. Although such compensatory strategy is a logical approach to decrease pain, it also reduces the normal active shock absorption increasing loading rates and may lead to deleterious and degenerative changes of the knee joint. Thus, the aims of this study were (i) to investigate whether there is reduced knee flexion in adults with PFP compared to healthy controls; and (ii) to analyze loading rates in these subjects, during stair climbing. Twenty-nine individuals with patellofemoral pain and twenty-five control individuals (18-30years) participated in this study. Each subject underwent three-dimensional kinematic and kinetic analyses during stair climbing on two separate days. Between-groups analyses of variance were performed to identify differences in peak knee flexion and loading rates. Intraclass correlation coefficient was performed to verify the reliability of the variables. On both days, the patellofemoral pain group demonstrated significantly reduced peak knee flexion and increased loading rates. In addition, the two variables obtained high to very high reliability. Reduced knee flexion during stair climbing as a strategy to avoid anterior knee pain does not seem to be healthy for lower limb mechanical distributions. Repeated loading at higher loading rates may be damaging to lower limb joints.
Resumo:
Comorbidity between mood disorders and cardiovascular disease has been described extensively. However, available antidepressants can have cardiovascular side effects. Treatment with selective inhibitors of neuronal nitric oxide synthase (nNOS) induces antidepressant effects, but whether the antidepressant-like effects of these drugs are followed by cardiovascular changes has not been previously investigated. Here, we tested in male rats exposed to chronic variable stress (CVS) the hypothesis that nNOS blockers are advantageous compared with conventional antidepressants in terms of cardiovascular side effects. We compared the effects of chronic treatment with the preferential nNOS inhibitor 7-nitroindazole (7-NI) with those evoked by the conventional antidepressant fluoxetine on alterations that are considered as markers of depression (immobility in the forced swimming test, FST, decreased body weight gain and increased plasma corticosterone concentration) and cardiovascular changes caused by CVS. Rats were exposed to a 14-day CVS protocol, while being concurrently treated daily with either 7-NI (30 mg/kg) or fluoxetine (10 mg/kg). Fluoxetine and 7-NI prevented the increase in immobility in the FST induced by CVS and reduced plasma corticosterone concentration in stressed rats. Both these treatments also prevented the CVS-evoked reduction of the depressor response to vasodilator agents and baroreflex changes. Fluoxetine and 7-NI-induced cardiovascular changes independent of stress exposure, including cardiac autonomic imbalance, increased intrinsic heart rate and vascular sympathetic modulation, a reduction of the pressor response to vasoconstrictor agents, and impairment of baroreflex activity. Altogether, these findings provide evidence that fluoxetine and 7-NI have similar effects on the depression-like state induced by CVS and on cardiovascular function.
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
Recent studies have shown that the X̄chart with variable parameters (Vp X̄ chart) detects process shifts faster than the traditional X̄ chart. This article extends these studies for processes that are monitored by both, X̄ and R charts. Basically, the X̄ and R values establish if the control should or should not be relaxed. When the X̄ and R values fall in the central region the control is relaxed because one will wait more to take the next sample and/or the next sample will be smaller than usual. When the X̄ or R values fall in the warning region the control is tightened because one will wait less to take the next sample and the next sample will be larger than usual. The action limits are also made variable. This paper proposes to draw the action limits (for both charts) wider than usual, when the control is relaxed and narrower than usual when the control is tightened. The Vp feature improves the joint X̄ and R control chart performance in terms of the speed with which the process mean and/or variance shifts are detected. © 1998 IIE.
Influence of morphological variables in photoelastic models with implants submitted to axial loading
Resumo:
Purpose: This study used 12 photoelastics models with different height and thickness to evaluate if the axial loading of 100N on implants changes the morphology of the photoelastic reflection. Methods: For the photoelastic analysis, the models were placed in a reflection polariscope for observation of the isochromatic fringes patterns. The formation of these fringes resulted from an axial load of 100N applied to the midpoint of the healing abutment attached to the implant with 10.0mm x 3.75mm (Conexão, Sistemas de Próteses, Brazil). The tension in each photoelastic model was monitored, photographed and observed using the software Phothoshop 7.0. For qualitative analysis, the area under the implant apex was measured including the green band of the second order fringe of each model using the software Image Tool. After comparison of the areas, the performance generated by each specimen was defined regarding the axial loading. Results: There were alterations in area with different height and thickness of the photoelastic models. It was observed that the group III (30mm in height) presented the smallest area. Conclusion: There was variation in the size of the areas analyzed for different height and thickness of the models and the morphology of the replica may directly influence the result in researches with photoelastic models.
Resumo:
PURPOSE: In view of reports in the literature on the benefits achieved with the use of platform switching, described as the use of an implant with a larger diameter than the abutment diameter, the goal being to prevent the (previously) normal bone loss down to the first thread that occurs around most implants, thus enhancing soft tissue aesthetics and stability and the need for implant inclination due to bone anatomy in some cases, the aim of this study was to evaluate bone stress distribution on peri-implant bone, by using three-dimensional finite element analysis to simulate the influence of implants with different abutment angulations (0 and 15 degrees) in platform switching. METHODS: Four mathematical models of an implant-supported central incisor were created with varying abutment angulations: straight abutment (S1 and S2) and angulated abutment at 15 degrees (A1 and A2), submitted to 2 loading conditions (100 N): S1 and A1-oblique loading (45 degrees) and S2 and A2-axial loading, parallel to the long axis of the implant. Maximum (σmax) and minimum (σmin) principal stress values were obtained for cortical and trabecular bone. RESULTS: Models S1 and A1 showed higher σmax in cortical and trabecular bone when compared with S2 and A2. The highest σmax values (in MPa) in the cortical bone were found in S1 (28.5), followed by A1 (25.7), S2 (11.6), and A2 (5.15). For the trabecular bone, the highest σmax values were found in S1 (7.53), followed by A1 (2.87), S2 (2.85), and A2 (1.47). CONCLUSIONS: Implants with straight abutments generated the highest stress values in bone. In addition, this effect was potentiated when the load was applied obliquely.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The number of electronic devices connected to agricultural machinery is increasing to support new agricultural practices tasks related to the Precision Agriculture such as spatial variability mapping and Variable Rate Technology (VRT). The Distributed Control System (DCS) is a suitable solution for decentralization of the data acquisition system and the Controller Area Network (CAN) is the major trend among the embedded communications protocols for agricultural machinery and vehicles. The application of soil correctives is a typical problem in Brazil. The efficiency of this correction process is highly dependent of the inputs way at soil and the occurrence of errors affects directly the agricultural yield. To handle this problem, this paper presents the development of a CAN-based distributed control system for a VRT system of soil corrective in agricultural machinery. The VRT system is composed by a tractor-implement that applies a desired rate of inputs according to the georeferenced prescription map of the farm field to support PA (Precision Agriculture). The performance evaluation of the CAN-based VRT system was done by experimental tests and analyzing the CAN messages transmitted in the operation of the entire system. The results of the control error according to the necessity of agricultural application allow conclude that the developed VRT system is suitable for the agricultural productions reaching an acceptable response time and application error. The CAN-Based DCS solution applied in the VRT system reduced the complexity of the control system, easing the installation and maintenance. The use of VRT system allowed applying only the required inputs, increasing the efficiency operation and minimizing the environmental impact.
Resumo:
The Cone Loading Test (CLT) consists of the execution of a load test on the piezocone probe in conjunction with the CPT test. The CLT yields the modulus ECLT, a parameter that can be used in the estimative of foundation settlement. It is also presented here the interpretation and the process to determine ECLT values from the stress-displacement curves obtained from cone loading tests. Several CLT tests were conducted at the experimental research site of São Paulo State University, Bauru-SP-Brazil. The geotechnical profile at the studied site is a brown to bright red slightly clayey fine sand, a tropical soil common to this region which is lateritic, unsaturated and collapsible. The results of CLT tests satisfactorily represent the behavior of the investigated soil. The penetrometric modulus ECLT for each depth was calculated considering the elastic behavior in the initial linear segment of the soil stress-strain curve. The ECLT moduli obtained for the various tests were compared to moduli obtained from PMT and DMT test results performed at same studied site. The shear modulus degradation curves obtained from the CLT tests are also presented. The comparison to PMT and DMT results indicates the CLT test is a viable complementary test to the CPT in the quest for better understanding stress-strain behavior of soils. Further, the CLT test provides a graphic visualization of the degradation of the shear modulus with increasing levels of strain. As a hybrid geotechnical test, CPT+CLT can be valuable in the investigation of non-conventional collapsible soils, whose literature lack reference parameters for the prediction of settlement in the design of foundations.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
The objective of this research was to verify the relationship between biological markers of performance of elite judo athletes and performance in different physical fitness tests. Twenty-one judo athletes were involved in the present observational and correlational study. Dermatoglyphic variables and the 2D:4D digit ratio were considered as biological markers, while the physical fitness variables analyzed were body fat, maximal strength, muscular power, the aerobic and anaerobic profile, and performance in specific tests. The statistics involved canonical correlations and a multivariate technique. A high and significant canonical correlation was observed between groups of variables, the first expressed by 1=0.999 (p<0.0001) and the second by 2=0.997 (p<0.001). It appears that, beyond height and body mass, total ridge count, pattern intensity for fingers and 2D:4D had more canonical loading. The physical fitness component of the first canonical variable incorporated, with high intensity were: the sum of skinfold thickness, the bench press onerepetition maximum (1RM), upper and lower body aerobic power. In the second canonical variable, physical fitness was composed of the squat 1RM, suspension time on the bar, the SJFT-index, and mean power during the upper body Wingate test. The data of this investigation showed the interdependence between biological markers of performance and physical fitness in high level judo athletes.
Resumo:
This paper presents the application and use of a methodology based on fuzzy theory and simulates its use in intelligent control of a hybrid system for generating electricity, using solar energy, photovoltaic and wind. When using a fuzzy control system, it reached the point of maximum generation of energy, thus shifting all energy generated from the alternative sources-solar photovoltaic and wind, cargo and / or batteries when its use not immediately. The model uses three variables used for entry, which are: wind speed, solar radiation and loading the bank of batteries. For output variable has to choose which of the batteries of the battery bank is charged. For the simulations of this work is used MATLAB software. In this environment mathematical computational are analyzed and simulated all mathematical modeling, rules and other variables in the system described fuzzy. This model can be used in a system of control of hybrid systems for generating energy, providing the best use of energy sources, sun and wind, so we can extract the maximum energy possible these alternative sources without any prejudice to the environment.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)