964 resultados para spinal cord diseases


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ependymomas are glial tumors derived from ependymal cells lining the ventricles and the central canal of the spinal cord. It may occur outside the ventricular structures, representing the extraventicular form, or without any relationship of ventricular system, called ectopic ependymona. Less than fifteen cases of ectopic ependymomas were reported and less than five were anaplastic. We report a rare case of pure cortical ectopic anaplastic ependymoma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The goal of this study was to assess the alterations in some anthropometric measures of sedentary subjects with spinal cord injury after a swimming interval training program with the use of a lifejacket. The study included 17 male spinal cord injured subjects, divided into two groups: 11 subjects in the training group (TG) and 6 in the control group (CG).The protocol employed a stroke of breaststroke, in work periods of moderate to severe, and stroke in the back stroke in periods of active recovery. An anthropometric evaluation was applied before the application of the training protocol and another (reevaluation) after 8 weeks. In the TG, the results obtained after the swimming program showed a significant change (p < 0.05) in the supra-iliac (SICF) and in the triciptal cutaneous folds (TCF), arm and waist circumference measures, from the first evaluation to the reevaluation. In the CG there were no significant changes observed in any of the variables studied. When comparing the two groups after the swimming training program, the average of the variable SICFT in the TG was significantly lower than the average for the CG. Generally speaking, the out comings showed the swimming protocol efficiency in promoting desirable anthropometric changes in spinal cord injured subjects while a reduction of fatty tissue in the arms and abdominal region and an increase of muscular tissue in the upper limbs of those subjects also occurred.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oropouche virus, of the family Bunyaviridae, genus Orthobunyavirus, serogroup Simbu, is an important causative agent of arboviral febrile illness in Brazil. An estimated 500,000 cases of Oropouche fever have occurred in Brazil in the last 30 years, with recorded cases also in Panama, Peru, Suriname and Trinidad. We have developed an experimental model of Oropouche virus infection in neonatal BALB/c mouse by subcutaneous inoculation. The vast majority of infected animals developed disease on the 5th day post infection, characterized mainly by lethargy and paralysis, progressing to death within 10 days. Viral replication was documented in brain cells by in situ hybridization, immunohistochemistry and virus titration. Multi-step immunohistochemistry indicated neurons as the main target cells of OROV infection. Histopathology revealed glial reaction and astrocyte activation in the brain and spinal cord, with neuronal apoptosis. Spleen hyperplasia and mild meningitis were also found, without viable virus detected in liver and spleen. This is the first report of an experimental mouse model of OROV infection, with severe involvement of the central nervous system, and should become useful in pathogenesis studies, as well as in preclinical testing of therapeutic interventions for this emerging pathogen. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The periaqueductal gray area (PAG) is a mesencephalic area involved in cardiovascular modulation. Glutamate (L-Glu) is an abundant excitatory amino acid in the central nervous system (CNS) and is present in the rat PAG. Moreover, data in the literature indicate its involvement in central blood pressure control. Here we report on the cardiovascular effects caused by microinjection of L-Glu into the dorsomedial PAG (dmPAG) of rats and the glutamatergic receptors as well as the peripheral mechanism involved in their mediation. The microinjection of L-Glu into the dmPAG of unanesthetized rats evoked dose-related pressor and bradycardiac responses. The cardiovascular response was significantly reduced by pretreatment of the dmPAG with a glutamatergic M-methyl-D-aspartate (NMDA) receptor antagonist (LY235959) and was not affected by pretreatment with a non-NMDA receptor antagonist (NBQX), suggesting a mediation of that response by the activation of NMDA receptors. Furthermore, the pressor response was blocked by pretreatment with the ganglion blocker pentolinium (5 mg/kg, intravenously), suggesting an involvement of the sympathetic nervous system in this response. Our results indicate that the microinjection of L-Glu into the dmPAG causes sympathetic-mediated pressor responses in unanesthetized rats, which are mediated by glutamatergic NMDA receptors in the dmPAG. (c) 2012 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The zona incerta (ZI) is a subthalamic nucleus connected to several structures, some of them known to be involved with antinociception. The 21 itself may be involved with both antinociception and nociception. The antinociceptive effects of stimulating the ZI with glutamate using the rat tail-flick test and a rat model of incision pain were examined. The effects of intraperitoneal antagonists of acetylcholine, noradrenaline, serotonin, dopamine, or opioids on glutamate-induced antinociception from the ZI in the tail-flick test were also evaluated. The injection of glutamate (7 mu g/0.25 mu l) into the ZI increased tail-flick latency and inhibited post-incision pain, but did not change the animal performance in a Rota-rod test. The injection of glutamate into sites near the ZI was non effective. The glutamate-induced antinociception from the ZI did not occur in animals with bilateral lesion of the dorsolateral funiculus, or in rats treated intraperitoneally with naloxone (1 and 2 m/kg), methysergide (1 and 2 m/kg) or phenoxybenzamine (2 m/kg), but remained unchanged in rats treated with atropine, mecamylamine, or haloperidol (all given at doses of 1 and 2 m/kg). We conclude that the antinociceptive effect evoked from the ZI is not due to a reduced motor performance, is likely to result from the activation of a pain-inhibitory mechanism that descends to the spinal cord via the dorsolateral funiculus, and involves at least opioid, serotonergic and a-adrenergic mechanisms. This profile resembles the reported effects of these antagonists on the antinociception caused by stimulating the periaqueductal gray or the pedunculopontine tegmental nucleus. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim: This study evaluates the contribution of inhibitory pain pathways that descend to the spinal cord through the dorsolateral funiculus (DLF) on the effect of intrathecal gabapentin against spinal nerve ligation (SNL)-induced behavioral hypersensitivity to mechanical stimulation in rats. Main method: Rats were submitted to a sham or complete ligation of the right LS and L6 spinal nerves and a sham or complete DLF lesion. Next, the changes induced by intrathecal administration of gabapentin on the paw withdrawal threshold of rats to mechanical stimulation were evaluated electronically. Key findings: Intrathecal gabapentin (200 mu g/5 mu l) that was injected 2 or 7 days after surgery fully inhibited the SNL-induced behavioral hypersensitivity to mechanical stimulation in sham DLF-Iesioned rats; gabapentin was effective against the SNL-induced behavioral hypersensitivity to mechanical stimulation also in DLF-Iesioned rats. Significance: The effect of intrathecally administered gabapentin against SNL-induced behavioral hypersensitivity to mechanical stimulation in rats does not depend on the activation of nerve fibers that descend to the spinal cord via the DLF. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Crotalphine, a 14 amino acid peptide first isolated from the venom of the South American rattlesnake Crotalus durissus terrificus, induces a peripheral long-lasting and opioid receptor-mediated antinociceptive effect in a rat model of neuropathic pain induced by chronic constriction of the sciatic nerve. In the present study, we further characterized the molecular mechanisms involved in this effect, determining the type of opioid receptor responsible for this effect and the involvement of the nitric oxide-cyclic GMP pathway and of K+ channels. Crotalphine (0.2 or 5 mu g/kg, orally; 0.0006 mu g/paw), administered on day 14 after nerve constriction, inhibited mechanical hyperalgesia and low-threshold mechanical allodynia. The effect of the peptide was antagonized by intraplantar administration of naltrindole, an antagonist of delta-opioid receptors, and partially reversed by norbinaltorphimine, an antagonist of kappa-opioid receptors. The effect of crotalphine was also blocked by 7-nitroindazole, an inhibitor of the neuronal nitric oxide synthase; by 1H-(1,2,4) oxadiazolo[4,3-a]quinoxaline-1-one, an inhibitor of guanylate cyclase activation; and by glibenclamide, an ATP-sensitive K+ channel blocker. The results suggest that peripheral delta-opioid and kappa-opioid receptors, the nitric oxide-cyclic GMP pathway, and ATP-sensitive K+ channels are involved in the antinociceptive effect of crotalphine. The present data point to the therapeutic potential of this peptide for the treatment of chronic neuropathic pain. Behavioural Pharmacology 23:14-24 (C) 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The neural mobilization technique is a noninvasive method that has proved clinically effective in reducing pain sensitivity and consequently in improving quality of life after neuropathic pain. The present study examined the effects of neural mobilization (NM) on pain sensitivity induced by chronic constriction injury (CCI) in rats. The CCI was performed on adult male rats, submitted thereafter to 10 sessions of NM, each other day, starting 14 days after the CCI injury. Over the treatment period, animals were evaluated for nociception using behavioral tests, such as tests for allodynia and thermal and mechanical hyperalgesia. At the end of the sessions, the dorsal root ganglion (DRG) and spinal cord were analyzed using immunohistochemistry and Western blot assays for neural growth factor (NGF) and glial fibrillary acidic protein (GFAP). Results: The NM treatment induced an early reduction (from the second session) of the hyperalgesia and allodynia in CCI-injured rats, which persisted until the end of the treatment. On the other hand, only after the 4th session we observed a blockade of thermal sensitivity. Regarding cellular changes, we observed a decrease of GFAP and NGF expression after NM in the ipsilateral DRG (68% and 111%, respectively) and the decrease of only GFAP expression after NM in the lumbar spinal cord (L3-L6) (108%). Conclusions: These data provide evidence that NM treatment reverses pain symptoms in CCI-injured rats and suggest the involvement of glial cells and NGF in such an effect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Evidence of self-sustained muscle activation following a brief electrical stimulation has been reported in the literature for certain muscles. Objectives: This report shows that the foot muscle (Flexor Digitorum Brevis - FDB) shows a self-sustained increase in muscle activity during upright stance in some subjects following a train of stimuli to the tibial nerve. Methods: Healthy subjects were requested to stand upright and surface EMG electrodes were placed on the FDB, Soleus and Tibialis Anterior muscles. After background muscle activity (BGA) acquisition, a 50 Hz train of stimuli was applied to the tibial nerve at the popliteal fossa. The root mean square values (RMS) of the BGA and the post-stimulus muscle activation were computed. Results: There was a 13.8% average increase in the FDB muscle EMG amplitude with respect to BGA after the stimulation was turned off. The corresponding post-stimulus Soleus EMG activity decreased by an average of 9.2%. We hypothesize that the sustained contraction observed in the FDB following stimulus may be evidence of persistent inward currents (PIC) generated in FDB spinal motoneurons. The post-stimulus decrease in soleus activity may have occurred due to the action of inhibitory interneurons caused by the PICs, which were triggered by the stimulus train. Conclusions: These sustained post-stimulation changes in postural muscle activity, found in different levels in different subjects, may be part of a set of possible responses that contribute to overall postural control.