1000 resultados para sistemas de auxílio à decisão
Resumo:
A utilização de aplicações Web 2.0 no processo ensino/aprendizagem tem vindo a intensificar-se nos últimos tempos, mais por iniciativas individuais de docentes e estudantes do que por estratégia das Instituições de Ensino. Este artigo apresenta um projecto já em curso que consiste na implementação de uma plataforma de criação de ambientes de aprendizagem controlados pelos estudantes, integrando aplicações Web 2.0 e sistemas de gestão de conteúdos. A plataforma permitirá a utilização segura de conteúdos criados em aplicações Web 2.0, no processo de avaliação, possibilitando a sua publicação na infra-estrutura controlada pela Instituição de Ensino Superior, contribuindo assim para a adequação do binómio ensino/aprendizagem ao novo paradigma implicado no processo de Bolonha.
Resumo:
Na atualidade, existe uma quantidade de dados criados diariamente que ultrapassam em muito as mais otimistas espectativas estabelecidas na década anterior. Estes dados têm origens bastante diversas e apresentam-se sobre várias formas. Este novo conceito que dá pelo nome de Big Data está a colocar novos e rebuscados desafios ao seu armazenamento, tratamento e manipulação. Os tradicionais sistemas de armazenamento não se apresentam como a solução indicada para este problema. Estes desafios são alguns dos mais analisados e dissertados temas informáticos do momento. Várias tecnologias têm emergido com esta nova era, das quais se salienta um novo paradigma de armazenamento, o movimento NoSQL. Esta nova filosofia de armazenamento visa responder às necessidades de armazenamento e processamento destes volumosos e heterogéneos dados. Os armazéns de dados são um dos componentes mais importantes do âmbito Business Intelligence e são, maioritariamente, utilizados como uma ferramenta de apoio aos processos de tomada decisão, levados a cabo no dia-a-dia de uma organização. A sua componente histórica implica que grandes volumes de dados sejam armazenados, tratados e analisados tendo por base os seus repositórios. Algumas organizações começam a ter problemas para gerir e armazenar estes grandes volumes de informação. Esse facto deve-se, em grande parte, à estrutura de armazenamento que lhes serve de base. Os sistemas de gestão de bases de dados relacionais são, há algumas décadas, considerados como o método primordial de armazenamento de informação num armazém de dados. De facto, estes sistemas começam a não se mostrar capazes de armazenar e gerir os dados operacionais das organizações, sendo consequentemente cada vez menos recomendada a sua utilização em armazéns de dados. É intrinsecamente interessante o pensamento de que as bases de dados relacionais começam a perder a luta contra o volume de dados, numa altura em que um novo paradigma de armazenamento surge, exatamente com o intuito de dominar o grande volume inerente aos dados Big Data. Ainda é mais interessante o pensamento de que, possivelmente, estes novos sistemas NoSQL podem trazer vantagens para o mundo dos armazéns de dados. Assim, neste trabalho de mestrado, irá ser estudada a viabilidade e as implicações da adoção de bases de dados NoSQL, no contexto de armazéns de dados, em comparação com a abordagem tradicional, implementada sobre sistemas relacionais. Para alcançar esta tarefa, vários estudos foram operados tendo por base o sistema relacional SQL Server 2014 e os sistemas NoSQL, MongoDB e Cassandra. Várias etapas do processo de desenho e implementação de um armazém de dados foram comparadas entre os três sistemas, sendo que três armazéns de dados distintos foram criados tendo por base cada um dos sistemas. Toda a investigação realizada neste trabalho culmina no confronto da performance de consultas, realizadas nos três sistemas.
Resumo:
A sustentabilidade energética do planeta é uma preocupação corrente e, neste sentido, a eficiência energética afigura-se como sendo essencial para a redução do consumo em todos os setores de atividade. No que diz respeito ao setor residencial, o indevido comportamento dos utilizadores aliado ao desconhecimento do consumo dos diversos aparelhos, são factores impeditivos para a redução do consumo energético. Uma ferramenta importante, neste sentido, é a monitorização de consumos nomeadamente a monitorização não intrusiva, que apresenta vantagens económicas relativamente à monitorização intrusiva, embora levante alguns desafios na desagregação de cargas. Abordou-se então, neste documento, a temática da monitorização não intrusiva onde se desenvolveu uma ferramenta de desagregação de cargas residenciais, sobretudo de aparelhos que apresentavam elevados consumos. Para isso, monitorizaram-se os consumos agregados de energia elétrica, água e gás de seis habitações do município de Vila Nova de Gaia. Através da incorporação dos vetores de água e gás, a acrescentar ao da energia elétrica, provou-se que a performance do algoritmo de desagregação de aparelhos poderá aumentar, no caso de aparelhos que utilizem simultaneamente energia elétrica e água ou energia elétrica e gás. A eficiência energética é também parte constituinte deste trabalho e, para tal, implementaram-se medidas de eficiência energética para uma das habitações em estudo, de forma a concluir as que exibiam maior potencial de poupança, assim como rápidos períodos de retorno de investimento. De um modo geral, os objetivos propostos foram alcançados e espera-se que num futuro próximo, a monitorização de consumos não intrusiva se apresente como uma solução de referência no que respeita à sustentabilidade energética do setor residencial.
Resumo:
Relatório de Estágio apresentado para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Gestão do Território.
Resumo:
No decorrer dos últimos anos tem-se verificado um acréscimo do número de sistemas de videovigilância presentes nos mais diversos ambientes, sendo que estes se encontram cada vez mais sofisticados. Os casinos são um exemplo bastante popular da utilização destes sistemas sofisticados, sendo que vários casinos, hoje em dia, utilizam câmeras para controlo automático das suas operações de jogo. No entanto, atualmente existem vários tipos de jogos em que o controlo automático ainda não se encontra disponível, sendo um destes, o jogo Banca Francesa. A presente dissertação tem como objetivo propor um conjunto de algoritmos idealizados para um sistema de controlo e gestão do jogo de casino Banca Francesa através do auxílio de componentes pertencentes à área da computação visual, tendo em conta os contributos mais relevantes e existentes na área, elaborados por investigadores e entidades relacionadas. No decorrer desta dissertação são apresentados quatro módulos distintos, os quais têm como objetivo auxiliar os casinos a prevenir o acontecimento de fraudes durante o decorrer das suas operações, assim como auxiliar na recolha automática de resultados de jogo. Os quatro módulos apresentados são os seguintes: Dice Sample Generator – Módulo proposto para criação de casos de teste em grande escala; Dice Sample Analyzer – Módulo proposto para a deteção de resultados de jogo; Dice Calibration – Módulo proposto para calibração automática do sistema; Motion Detection – Módulo proposto para a deteção de fraude no jogo. Por fim, para cada um dos módulos, é apresentado um conjunto de testes e análises de modo a verificar se é possível provar o conceito para cada uma das propostas apresentadas.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Civil – Ramo de Construção pela Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.
Resumo:
Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre em Estatística e Gestão da Informação
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Civil – Estruturas
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia do Ambiente, perfil de Engenharia Ecológica
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Mecânica pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia.A presente dissertação foi preparada no âmbito do protocolo de Abril de 2002 assinado entre a FCT da Universidade Nova de Lisboa e a ESTS do Instituto Politécnico de Setúbal
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica.
Resumo:
More than ever, there is an increase of the number of decision support methods and computer aided diagnostic systems applied to various areas of medicine. In breast cancer research, many works have been done in order to reduce false-positives when used as a double reading method. In this study, we aimed to present a set of data mining techniques that were applied to approach a decision support system in the area of breast cancer diagnosis. This method is geared to assist clinical practice in identifying mammographic findings such as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis. In this work a reliable database was used, with 410 images from about 115 patients, containing previous reviews performed by radiologists as microcalcifications, masses and also normal tissue findings. Throughout this work, two feature extraction techniques were used: the gray level co-occurrence matrix and the gray level run length matrix. For classification purposes, we considered various scenarios according to different distinct patterns of injuries and several classifiers in order to distinguish the best performance in each case described. The many classifiers used were Naïve Bayes, Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random Forests). The results in distinguishing mammographic findings revealed great percentages of PPV and very good accuracy values. Furthermore, it also presented other related results of classification of breast density and BI-RADS® scale. The best predictive method found for all tested groups was the Random Forest classifier, and the best performance has been achieved through the distinction of microcalcifications. The conclusions based on the several tested scenarios represent a new perspective in breast cancer diagnosis using data mining techniques.