943 resultados para sensory
Resumo:
Dissertation presented to obtain the Ph.D. degree in Biology at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry, Plant Physiology
Resumo:
O marketing transacional apresenta-se nos dias de hoje insuficiente para fazer face às exigências de um consumidor mais participativo, seletivo e crítico. No mercado global, industrializado e em constante evolução tecnológica, é, cada vez mais, difícil obter um grau de diferenciação assente apenas nos benefícios funcionais e racionais. O marketing transacional evoluiu para o marketing relacional, constituindo o cliente o centro do processo de trocas. A economia das experiências alterou a forma como as marcas trabalham o mercado, introduzindo o conceito de experiências, o que por sua vez conceptualizou o marketing experiencial, orientado para a gestão da experiência do cliente, transformando o ato de consumo em algo memorável, cheio de estímulos sensoriais e emocionais, convertendo-se, por vezes, no próprio produto, seja ele de âmbito industrial, desportivo ou mesmo cultural. Este grau de envolvimento do cliente com a marca é elemento gerador de emoção, de satisfação, de lealdade e de valor. Este trabalho pretendeu analisar a importância e os componentes estimuladores do marketing experiencial e a sua relação com as emoções, satisfação e a lealdade dos consumidores no evento cultural “Serralves em festa 2013”. Para tal, utilizamos uma metodologia de investigação quantitativa, com recurso a análise de equações estruturais, suportada por uma pesquisa teórica. O estudo empírico realizado, baseado num inquérito por questionário, possibilitou obter uma amostra de 264 respostas válidas. Após a validação e melhoria das escalas de medida dos conceitos, os resultados destas e do modelo estrutural demonstraram valores adequados. Estudaram-se e comprovaram-se as relações previstas nas hipóteses, nomeadamente, a relação positiva do impacto das experiências no comportamento do consumidor, designadamente, na sua emoção e satisfação e o impacto destas na sua lealdade. Entre as variáveis estudadas foram obtidos interessantes níveis de correlação e capacidades preditivas.
Resumo:
This work presents a novel surface Smart Polymer Antibody Material (SPAM) for Carnitine (CRT, a potential biomarker of ovarian cancer), tested for the first time as ionophore in potentiometric electrodes of unconventional configuration. The SPAM material consisted of a 3D polymeric network created by surface imprinting on graphene layers. The polymer was obtained by radical polymerization of (vinylbenzyl) trimethylammonium chloride and 4-styrenesulfonic acid (signaling the binding sites), and vinyl pivalate and ethylene glycol dimethacrylate (surroundings). Non-imprinted material (NIM) was prepared as control, by excluding the template from the procedure. These materials were then used to produce several plasticized PVC membranes, testing the relevance of including the SPAM as ionophore, and the need for a charged lipophilic additive. The membranes were casted over solid conductive supports of graphite or ITO/FTO. The effect of pH upon the potentiometric response was evaluated for different pHs (2-9) with different buffer compositions. Overall, the best performance was achieved for membranes with SPAM ionophore, having a cationic lipophilic additive and tested in HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer, pH 5.1. Better slopes were achieved when the membrane was casted on conductive glass (-57.4 mV/decade), while the best detection limits were obtained for graphite-based conductive supports (3.6 × 10−5mol/L). Good selectivity was observed against BSA, ascorbic acid, glucose, creatinine and urea, tested for concentrations up to their normal physiologic levels in urine. The application of the devices to the analysis of spiked samples showed recoveries ranging from 91% (± 6.8%) to 118% (± 11.2%). Overall, the combination of the SPAM sensory material with a suitable selective membrane composition and electrode design has lead to a promising tool for point-of-care applications.
Resumo:
Carnitine (CRT) is a biological metabolite found in urine that contributes in assessingseveral disease conditions, including cancer. Novel quick screening procedures for CRT are therefore fundamental. This work proposes a novel potentiometric device where molecularly imprinted polymers (MIPs) were used as ionophores. The host-tailored sites were imprinted on a polymeric network assembled by radical polymerization of methacrylic acid (MAA) and trimethylpropane trimethacrylate (TRIM). Non-imprinted polymers (NIPs) were produced as control by removing the template from the reaction media. The selective membrane was prepared by dispersing MIP or NIP particles in plasticizer and poly(vinyl chloride), PVC, and casting this mixture over a solid contact support made of graphite. The composition of the selective membrane was investigated with regard to kind/amount of sensory material (MIP or NIP), and the need for a lipophilic additive. Overall, MIP sensors with additive exhibited the best performance, with near-Nernstian response down to ~ 1 × 10− 4 mol L− 1, at pH 5, and a detection limitof ~ 8 × 10− 5 mol L− 1. Suitable selectivity was found for all membranes, assessed by the matched potential method against some of the most common species in urine (urea, sodium, creatinine, sulfate, fructose and hemoglobin). CRT selective membranes including MIP materials were applied successfully to the potentiometric determination of CRT in urine samples.
Resumo:
Astringency is an organoleptic property resulting mostly from the interaction of salivary proteins with dietary polyphenols. It is of great importance to consumers but being typically measured by sensorial panels it turns out subjective and expensive. The main goal of the present work is to develop a sensory system to estimate astringency relying on protein/polyphenol interactions. For this purpose, a model protein was immobilized on a sensory gold surface and its subsequent interaction with polyphenols was measured by Surface Plasma Resonance (SPR). α-amylase and pentagalloyl glucose (PGG) were selected as model protein and polyphenol, respectively. To ensure specific binding between these, various surface chemistries were tested. Carboxylic terminated thiol decreased the binding ability of PGG and allowed covalent attachment of α-amylase to the surface. The pH 5 was the optimal condition for α-amylase immobilization on the surface. Further studies focus on Localized SPR sensor and application to wine samples, providing objectivity when compared to a trained panel.
Resumo:
A novel optical disposable probe for screening fluoroquinolones in fish farming waters is presented, having Norfloxacin (NFX) as target compound. The colorimetric reaction takes place in the solid/liquid interface consisting of a plasticized PVC layer carrying the colorimetric reagent and the sample solution. NFX solutions dropped on top of this solid-sensory surface provided a colour change from light yellow to dark orange. Several metals were tested as colorimetric reagents and Fe(III) was selected. The main parameters affecting the obtained colour were assessed and optimised in both liquid and solid phases. The corresponding studies were conducted by visible spectrophotometry and digital image acquisition. The three coordinates of the HSL model system of the collected image (Hue, Saturation and Lightness) were obtained by simple image management (enabled in any computer). The analytical response of the optimised solid-state optical probe against concentration was tested for several mathematical transformations of the colour coordinates. Linear behaviour was observed for logarithm NFX concentration against Hue+Lightness. Under this condition, the sensor exhibited a limit of detection below 50 μM (corresponding to about 16 mg/mL). Visual inspection also enabled semi-quantitative information. The selectivity was ensured against drugs from other chemical groups than fluoroquinolones. Finally, similar procedure was used to prepare an array of sensors for NFX, consisting on different metal species. Cu(II), Mn(II) and aluminon were selected for this purpose. The sensor array was used to detect NFX in aquaculture water, without any prior sample manipulation.
Resumo:
Monitoring organic environmental contaminants is of crucial importance to ensure public health. This requires simple, portable and robust devices to carry out on-site analysis. For this purpose, a low-temperature co-fired ceramics (LTCC) microfluidic potentiometric device (LTCC/μPOT) was developed for the first time for an organic compound: sulfamethoxazole (SMX). Sensory materials relied on newly designed plastic antibodies. Sol–gel, self-assembling monolayer and molecular-imprinting techniques were merged for this purpose. Silica beads were amine-modified and linked to SMX via glutaraldehyde modification. Condensation polymerization was conducted around SMX to fill the vacant spaces. SMX was removed after, leaving behind imprinted sites of complementary shape. The obtained particles were used as ionophores in plasticized PVC membranes. The most suitable membrane composition was selected in steady-state assays. Its suitability to flow analysis was verified in flow-injection studies with regular tubular electrodes. The LTCC/μPOT device integrated a bidimensional mixer, an embedded reference electrode based on Ag/AgCl and an Ag-based contact screen-printed under a micromachined cavity of 600 μm depth. The sensing membranes were deposited over this contact and acted as indicating electrodes. Under optimum conditions, the SMX sensor displayed slopes of about −58.7 mV/decade in a range from 12.7 to 250 μg/mL, providing a detection limit of 3.85 μg/mL and a sampling throughput of 36 samples/h with a reagent consumption of 3.3 mL per sample. The system was adjusted later to multiple analyte detection by including a second potentiometric cell on the LTCC/μPOT device. No additional reference electrode was required. This concept was applied to Trimethoprim (TMP), always administered concomitantly with sulphonamide drugs, and tested in fish-farming waters. The biparametric microanalyzer displayed Nernstian behaviour, with average slopes −54.7 (SMX) and +57.8 (TMP) mV/decade. To demonstrate the microanalyzer capabilities for real applications, it was successfully applied to single and simultaneous determination of SMX and TMP in aquaculture waters.
Resumo:
Sulfadiazine is an antibiotic of the sulfonamide group and is used as a veterinary drug in fish farming. Monitoring it in the tanks is fundamental to control the applied doses and avoid environmental dissemination. Pursuing this goal, we included a novel potentiometric design in a flow-injection assembly. The electrode body was a stainless steel needle veterinary syringe of 0.8-mm inner diameter. A selective membrane of PVC acted as a sensory surface. Its composition, the length of the electrode, and other flow variables were optimized. The best performance was obtained for sensors of 1.5-cm length and a membrane composition of 33% PVC, 66% onitrophenyloctyl ether, 1% ion exchanger, and a small amount of a cationic additive. It exhibited Nernstian slopes of 61.0 mV decade-1 down to 1.0×10-5 mol L-1, with a limit of detection of 3.1×10-6 mol L-1 in flowing media. All necessary pH/ionic strength adjustments were performed online by merging the sample plug with a buffer carrier of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, pH 4.9. The sensor exhibited the advantages of a fast response time (less than 15 s), long operational lifetime (60 days), and good selectivity for chloride, nitrite, acetate, tartrate, citrate, and ascorbate. The flow setup was successfully applied to the analysis of aquaculture waters. The analytical results were validated against those obtained with liquid chromatography–tandem mass spectrometry procedures. The sampling rate was about 84 samples per hour and recoveries ranged from 95.9 to 106.9%.
Resumo:
III Jornadas de Electroquímica e Inovação (Electroquímica e Nanomateriais), na Universidade de Trás-os-Montes e Alto Douro, Vila Real, 16 a 17 de Setembro de 2013
Resumo:
NanoPT 2014 International Conference, in Portugal, on February 12-14. Poster presentation based on topic Nanobio/Nanomedicine
Resumo:
Graduate Student Symposium on Molecular Imprinting 2013, na Queen’s University, Belfast, United Kingdom, 15 a 17 de Agosto de 2013
Resumo:
A 5-year-old female developed, after a 7-month period of fever, anorexia, weight loss, and a transitory cutaneous erythematous eruption, a severe acute transverse myelopathy, with a partial recovery of motor and sensory function. She had positive antinuclear and antidouble-stranded DNA antibodies but no antiphospholipid antibodies. Six months later she had massive proteinuria and restarted treatment with steroids and cyclophosphamide. Our patient is one of the youngest reported with lupus myelopathy. We discuss the clinical presentation, the magnetic resonance imaging findings, and other relevant laboratory studies of this rare but serious complication of systemic lupus erythematosus.
Resumo:
In the late 1960s, Melanoides tuberculatus snails were introduced in Brazil from North/East Africa and Southeast Asia. The first records of specimens infected with cercariae were registered in Rio de Janeiro State in 2001. The present study reports the occurrence of M. tuberculatus infected with larval trematodes in Rio de Janeiro City. Bottom sediment was collected with dip nets and sieved through 0.25 inch-mesh screening. Snails were transported to the laboratory in vials with stream water, then measured and individually isolated in glass vials with distilled water. They were exposed to artificial light and temperature to induce cercarial emergence. The most actively emerging cercariae were processed by differential staining and silver nitrate impregnation methods. Negative snails were subsequently dissected. Approximately 700 snails were collected. Snail total lengths ranged from 1.2 to 3.3 cm. The prevalence rate was 15.76% although 53.76% of the snails were found infected in one of the sites. Infected snails were infected with rediae and pleurolophocercous cercariae. Cercarial morphology and chaetotaxy were consistent with those of the family Heterophyidae mostly due to the presence of median dorsal and ventral fins on the tail and the absence of CI dorsal sensory receptors.
Resumo:
13th International Conference on Autonomous Robot Systems (Robotica), 2013, Lisboa