963 resultados para pseudo telepatia quantistica qubit computazione meccanica
Resumo:
Quantum point contact (QPC), one of the typical mesoscopic transport devices, has been suggested to be an efficient detector for quantum measurement. In the context of two-state charge qubit, our previous studies showed that the QPC's measurement back-action cannot be described by the conventional Lindblad quantum master equation. In this work, we study the measurement problem of a multistate system, say, an electron in disordered potential, subject to the quantum measurement of the mesoscopic detector QPC. The effect of measurement back-action and the detector's readout current are analyzed, where particular attention is focused on some new features and the underlying physics associated with the measurement-induced delocalization versus the measurement voltages.
Resumo:
We investigate the quantum dynamics of a Cooper-pair box with a superconducting loop in the presence of a nonclassical microwave field. We demonstrate the existence of Rabi oscillations for both single- and multiphoton processes and, moreover, we propose a new quantum computing scheme (including one-bit and conditional two-bit gates) based on Josephson qubits coupled through microwaves.
Resumo:
Based on the analytical solution to the time-dependent Schrodinger equations, we evaluate the holonomic quantum computation beyond the adiabatic limit. Besides providing rigorous confirmation of the geometrical prediction of holonomies, the present dynamical resolution offers also a practical means to study the nonadiabaticity induced effects for the universal qubit operations.
Resumo:
In this letter, we propose a scheme to buildup a highly coherent solid-state quantum bit (qubit) from two coupled quantum dots. Quantum information is stored in the state of the electron-hole pair with the electron and hole located in different dots, and universal quantum gates involving any pair of qubits are realized by effective coupling interaction via virtually exchanging cavity photons. (C) 2002 American Institute of Physics.
Resumo:
Based on an idea that spatial separation of charge states can enhance quantum coherence, we propose a scheme for a quantum computation with the quantum bit (qubit) constructed from two coupled quantum dots. Quantum information is stored in the electron-hole pair state with the electron and hole located in different dots, which enables the qubit state to be very long-lived. Universal quantum gates involving any pair of qubits are realized by coupling the quantum dots through the cavity photon which is a hopeful candidate for the transfer of long-range information. The operation analysis is carried out by estimating the gate time versus the decoherence time.
Resumo:
The optimal entanglement manipulation for a single copy of mixed states of two qubits is to transform it to a Bell diagonal state. In this paper we derive an explicit form of the local operation that can realize such a transformation. The result obtained is universal for arbitrary entangled two-qubit states and it discloses that the corresponding local filter is not unique for density matrices with rank n = 2 and can be exclusively determined for that with n = 3 and 4. As illustrations, a four-parameter family of mixed states are explored, the local filter as well as the transformation probability are given explicitly, which verify the validity of the general result.
Resumo:
We study the essential roles of self and mutual inductances in superconducting charge qubits and propose a scheme to couple charge qubits by means of mutual inductance. We also show that the Hamiltonians can be exactly formulated in compact forms in the spin-1/2 representation for both single- and double-qubit structures.
Resumo:
We analyze low-temperature Raman and photoluminescence spectra of MBE-grown GaN layers on sapphire. Strong and sharp Raman peaks are observed in the low frequency region. These peaks, which are enhanced by excitation in resonance with yellow luminescence transitions, are attributed to electronic transitions related to shallow donor levels in hexagonal GaN. It is proposed that a low frequency Raman peak at 11.7 meV is caused by a pseudo-local vibration mode related to defects involved in yellow luminescence transitions. The dependence of the photoluminescence spectra on temperature gives additional information about the residual impurities in these GaN layers.
Resumo:
Threading dislocations in the III-V heterostructure system are investigated based on the observation of dislocations in the In0.3Ga0.7As/GaAs superlattice with transmission electron microscope. To explain both the presence and orientation of threading dislocations in the epilayers an alloy effect on the dislocation lines in ternary III-V compounds is proposed, and, in addition, a pseudo-stable state for threading dislocations in binary compounds is recognized. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N ( 2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.
Resumo:
提出并分析了一种确定的、可并行的消息认证码--DPMAC(deterministic parallelizable message authentication code).它基于分组长度为128-bit的分组密码来构造.使用一个密钥,可以处理任意长度的消息.在底层分组密码是伪随机置换的假设下,使用Game-Playing技术量化了攻击者成功伪造的概率,从而证明了其安全性.
Resumo:
消息认证码是保证消息完整性的重要工具,它广泛应用于各种安全系统中.随着可证明安全理论的逐渐成熟,具备可证明安全的消息认证码无疑成为人们的首选.本文基于XOR MAC和PMAC的构造方法,使用分组密码构造了一种确定性、可并行的消息认证码-DXOR MAC(Deterministic XOR MAC).在底层分组密码是伪随机置换的假设下,本文使用Game-Playing技术量化了攻击者成功伪造的概率,从而证明了其安全性.
Resumo:
Relative paleointensity records from the northern South China Sea, northwest Pacific Ocean were studied in two gravity piston cores. Continuous mineral magnetic and paleomagnetic measurements were made using discrete sediment samples. Detailed rock magnetic parameters, such as thermomagnetic and high-field hysteresis data, indicate that pseudo-single domain magnetite in a narrow range of grain-size and concentration is the main contributor to the remanent magnetization. The uniform magnetic mineralogy meets the commonly accepted criteria for establishing relative paleointensity records. The relative paleointensity (RPI) curves were constructed by normalizing the natural remanent magnetization (NRM) with isothermal remanent magnetization (IRM), both in the 20-60 mT demagnetization state. Dating constraints have been provided by radiocarbon ages in the upper 400 cm of both cores. Furthermore, we have correlated our paleointensity records with NAPIS-75, S.Atlantic-1089, Sint-200 and NOPAPIS-250 to determine the chronological RPI framework for the South China Sea (SCS-PIS). Although some temporal offsets of paleointensity features between the different records have been recognized, their similar shape suggests that relative paleointensity on the 10(3)-10(4) year scale is globally coherent and can provide an age framework for sediments independent of delta O-18 ages.
Resumo:
We report the experimental result of all-optical passive 3.55 Gbit/s non-return-to-zero (NRZ) to pseudo-return-to-zero (PRZ) format conversion using a high-quality-factor (Q-factor) silicon-based microring resonator notch filter on chip. The silicon-based microring resonator has 23800 Q-factor and 22 dB extinction ratio (ER), and the PRZ signals has about 108 ps width and 4.98 dB ER.
Resumo:
Physical vapor transport studies of GeSe(x)Te1 - x (x = 0.1, 0.2, 0.3, and 0.4) solid solutions demonstrated, that individual, large single crystals of these materials can be grown in closed ampoules. A compositional analysis of the grown crystals revealed, that the mass transport (crystal growth) process under steady-state conditions is pseudo-congruent and controlled by diffusion processes in the source material. From these experiments, the degree of non-stoichiometry (Ge-vacancy concentrations) of GeSe(x)Te1 - x single crystals could be estimated. The effects of the cubic to rhombohedral phase transformation during cooling on the microstructure and morphology of the grown mixed crystals are observed. This work provides the basis for subsequent defect studies and electrical measurements on these crystals.