968 resultados para preclinical studies
Resumo:
The preferred conformations of β-phenylpropionyl-Image -phenylalanine (β-PPP) and N-carbobenzoxy-L-phenylalanine (Cbz-Phe), two inhibitors of thermolysin, have been determined by computing potential energy using empirial potential energy functions. Of the 15 to 20 conformations that are favoured for each of these inhibitors only a few have the right conformation to reach the active site of the enzyme. The conformer of β-PPP that initiates binding with the enzyme is different from the bound one, while for Cbz-Phe the bound and initiating conformers are quite similar. Thus, β-PPP favours the ‘induced fit’ model while Cbz-Phe follows the ‘lock and key’ model of binding. The inhibitors differ in their alignment at the active site.
Resumo:
Autoimmune diseases affect 5 % of the population and come in many forms, such as diabetes, rheumatoid arthritis and MS. However, how and why autoimmune diseases arise are not yet fully resolved. In this thesis, the onset of autoimmunity was investigated using both patient samples and a mouse model of autoimmunity. Autoimmune diseases are usually complex, due to a number of different causative genes and environmental factors. However, a few monogenic autoimmune diseases have been described, which are caused by mutations in only one gene per disease. One of such disease is called APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) and is enriched in the Finnish population. The causative gene behind APECED is named AIRE from AutoImmune REgulator. How malfunction of just one gene product can cause the multitude of disease components found in APECED is not yet resolved. This thesis sought out to find out more about the functions of AIRE, in order to reveal why APECED and other autoimmune diseases arise and what goes wrong? Usually, immune cells are taught to distinguish between self and non-self during their development. That way, immune cells can fight off bacteria and microbes while leaving the tissues and organs of the host organism itself unharmed. In APECED, the development of immune cells called αβ T cells is incomplete. The cells are not able to fully distinguish between self and non-self. This leads to autodestruction of self tissues and autoimmune disease. One of the achievements of this thesis was the finding that the development of another set of T cells called γδ T cells is not affected by AIRE in mice or in men. Instead, we found that another type of immune cell important in tolerance, called the dendritic cell is defective in APECED patients and is not able to respond to microbial stimulus in a normal fashion. Finally, we studied Aire-deficient mice and found that autoantibodies expressed in the mice were not targeted against the same molecules as those found in APECED patients. This indicates differences in the autoimmune pathology in mice and men. More work is still required before we understand the mechanisms of tolerance and autoimmunity well enough to be able to cure APECED, let alone the more complex autoimmune diseases. Yet altogether, the findings of this thesis work bring us one step closer to finding out why and how APECED and common autoimmune diseases arise.
Resumo:
The antinociceptive properties of oxycodone and its metabolites were studied in models of thermal and mechanical nociception and in the spinal nerve ligation (SNL) model of neuropathic pain in rats. Oxycodone induced potent antinociception after subcutaneous (s.c.) administration in all models of nociception used in rats compared with morphine, methadone and its enantiomers. In the SNL model of neuropathic pain in rats, oxycodone produced dose dependent antinociception after s.c. administration. The antinociceptive effects of s.c. oxycodone were antagonized by naloxone but not by nor-binaltorphimine (Nor-BNI) a selective κ-opioid receptor antagonist indicating that the antinociceptive properties of oxycodone are predominantly μ-opioid receptor-mediated. The antinociceptive activity of oxymorphone, noroxycodone, and noroxymorphone, oxidative metabolites of oxycodone, were studied to determine their role in the oxycodone-induced antinociception in the rat. Of the metabolites of oxycodone s.c. administration of oxymorphone produced potent thermal and mechanical antinociception. Noroxycodone had a poor antinociceptive effect and noroxymorphone was inactive. Oxycodone produced naloxone-reversible antinociception after intrathecal (i.t) administration with a poor potency compared with morphine and oxymorphone. This seems to be related to the low efficacy and potency of oxycodone to stimulate μ-opioid receptor activation in the spinal cord in μ-opioid receptor agonist-stimulated (GTP)γ[S] autoradiography, compared with morphine and oxymorphone. All metabolites studied were more potent than oxycodone after i.t. administration. I.t. noroxymorphone induced a significantly longer lasting antinociceptive effect compared with the other drugs studied. The role of cytochrome P450 (CYP) 2D6-mediated metabolites on the analgesic activity of oxycodone in humans was studied by blocking the CYP2D6-mediated metabolism of oxycodone with paroxetine. Paroxetine co-administration had no effect on the analgesic effect of oxycodone compared with placebo in chronic pain patients, indicating that oxycodone-induced analgesia and adverse-effects are not dependent of the CYP2D6-mediated metabolism in humans. Although oxycodone has many pharmacologically active metabolites, they seem to have an insignificant role in oxycodone-induced antinociception in humans and rats.
Resumo:
Cyclosporine-A (CsA) is widely used after organ transplantation to prevent rejection and in the treatment of autoimmune diseases. Hypertension and nephrotoxicity are common side-effects of CsA. Studies in patients on the prevention of the side-effects of CsA are difficult to conduct because the patients often receive a combination of different drugs thus making study of the side-effects of a single drug impossible. A challenge in experimental studies has been the lack of an animal model in which the side-effects concomitantly occur. Epidemiological data show an association between sodium (Na) intake and blood pressure. There is also evidence on low dietary intake of magnesium (Mg) and potassium (K) and high blood pressure. Our study was designed to develop an experimental model to study the side-effects of CsA in spontaneously hypertensive rats (SHR). On high dietary sodium, CsA caused hypertension, left ventricular hypertrophy (LVH), narrowing of the coronary arteries, small myocardial infarctions, and proteinuria, reduced creatinine clearance and histopathological renal injury in SHR. Loss of Mg into the urine caused by CsA resulted in Mg depletion in the tissues. Renal excretion of dopamine was reduced and the renin-angiotensin-aldosterone system was activated. We investigated the effects of dietary Mg and/or K and the calcium antagonist drug, isradipine, on the prevention of CsA toxicity. Dietary supplementation of Mg alone or in combination with K prevented from the deleterious pathophysiological and histopathological changes in the kidneys and the heart. K alone had little effect. Isradipine protected better than Mg from LVH, but the combination of isradipine and Mg was the most effective. Isradipine did not, however, protect against Mg loss. In our animal model, the combination of high dietary Na and treatment with CsA accelerated the development of the cardiovascular and renal changes clinically known as the side-effects of CsA. Dietary supplementation of Mg and K and reduction of Na intake and the calcium antagonist drug isradipine prevent from the deleterious effects of CsA.
Resumo:
The biological function of nitric oxide and its oxidized forms has received a great deal of attention over the past two decades. However much less attention has been focused on the reduced nitric oxide, nitroxyl (HNO). Unlike NO, HNO is highly reactive species and thus it needs to be generated by using donor compounds under experimental conditions. Currently there is only one donor available, Angeli s salt, which releases HNO in a controlled fashion under pysiological conditions. Prior studies have shown the pro-oxidative and cytotoxic potential of Angeli s salt compared to NO donors. The high reactivity of HNO with cysteine thiols is considered to form the biochemical basis for its unique properties compared to other nitrogen oxides. Such thiol modification cold result in disturbances of vital cellular functions and subsequently to death of disturbance sensitive cells, such as neurons. Therefore modification of proteins and lipids was studied in vitro and the potential neurotoxicity was studied in vivo by local infusion of Angeli s salt into the rat central nervous system. The results show that under aerobic in vitro conditions, HNO can, subsequent to autoxidation, cause irreversible oxidative modification of proteins and lipids. These effects are not however seen in cell culture or following infusion of Angeli s salt directly into the rat central nervous tissue likely due to presence of lower oxygen and higher thiol concentration. However, due to high reactivity with thiols, HNO can cause irreversible inactivation of cysteine modification sensitive enzymes such as cysteine proteases papain in vitro and cathepsin B in cell culture. Furthermore it was shown that infusion of HNO releasing Angeli s salt into the rat central nervous system causes necrotic cell death and motor dysfunction following infusion into the lumbal intrathecal space. In conclusion, the acute neurotoxic potential of Angeli s salt was shown to be relatively low, but still higher compared to NO donors. HNO was shown to affect numerous cellular processes which could result in neurotoxicity if HNO was produced in vivo.
Resumo:
The presence of 1-methyl adenine in transfer RNA is a feature that Mycobacterium smegmatis shares with only a few other prokaryotes. The enzyme 1-methyl adenine tRNA methyl transferase from this source has been purified and the preliminary results show the presence of two activity peaks with different substrate specificity.
Resumo:
The winged-bean tuber lectin binds to N-dansyl(5-dimethylaminonaphthalene-1-sulphonic acid)galactosamine, leading to a 12.5-fold increase in dansyl fluorescence with a concomitant 25 nm blue-shift in the emission maximum. The enhancement of fluorescence intensity was completely reversed by the addition of methyl α-galactopyranoside. The lectin has two binding sites per molecule for this fluorescent sugar and an association constant of 2.59 · 105 M−1 at 25° C. The binding of N-dansylgalactosamine to the lectin shows that it can accommodate a large hydrophobic substituent on the C-2 carbon of d-galactose. Studies with other sugars indicate that a hydrophobic substituent with α-conformation at the anomeric position increases the affinity of binding. The C-4 and C-6 hydroxyl groups are also critical for sugar binding to this lectin.
Resumo:
In the systematic study of amine … LiCl [amines = NH3, CH3NH2, (CH3)2NH] complexes the possibility of an ion-pair structure and the effect of methylation on the stabilization energy is investigated. ΔEis evaluated by the SCF/4-31G method and augmented by the approximate dispersion energy calculated perturbationally. The interaction energy decreases with the increasing number of methyl groups in the amine. The dispersion energy plays a negligible role in the stabilization of complexes. None of the systems studied are ion pairs; their Li bonds are of a so-called molecular type. Due to the divergence of the multipole expansion, the attempt to correct the 4-31G stabilization energies via the electrostatic energy fails. The relative order of the ΔE in the series of complexes is verified instead in the extended basis set calculation. The lithium bonds are compared with their H-bonded analogues.
Resumo:
Surface segregation of Ge is seen in the Cu-5at%Ge alloy with an activation enthalpy equal to 17 kJ/mol. Oxidation of the alloy in the temperature range 400 to 600 K shows the formation of Cu2O and GeO which on further heating in vacuum at 650 K converts to GeO2 with the reduction of Cu2O to Cu.
Resumo:
Proteolytic enzymes, such as matrix metalloproteinases (MMP), are associated to the progression of several cancers. They degrade extracellular components, which helps tumors to expand and cancer cells to escape from the primary site. Of all MMPs, gelatinases (MMP-2 and -9) and membrane type-1 matrix metalloproteinase (MT1-MMP, MMP-14), in particular, are often associated to more aggressive types of head and neck carcinomas as well as to a poorer outcome in patient survival. Although therapies during the last decades have advanced, the mortality of the disease is still rather high and adjuvant therapies are searched for continuously. MMP-9 and MT1-MMP are also involved in neo-angiogenesis, which is necessary for tumor expansion. For this reason, we have identified synthetic peptides-targeting gelatinases and MT1-MMP, and have also evaluated their anticancer effects in vitro and in vivo. Antigelatinolytic peptides effectively inhibited tongue-carcinoma cell invasion and reduced the growth of xenografted tumors. In tumor samples of mice that were treated with antigelatinolytic peptides, the micro-vessel density was significantly reduced. We also identified a novel MT1-MMP targeting peptide and demonstrated that it exerted anticancer effects against several malignant cell lines in vitro. The effects of MT1-MMP inhibition on tongue-squamous cell carcinomas were evaluated by using xenograft tumors, which it effectively inhibited. Tranexamic acid was also demonstrated to inhibit tongue-squamous cell carcinoma invasion, most probably due to its ability to prevent the plasmin-mediated activation of proMMP-9. Leukocyte β2 integrins are another interesting option when evaluating targets for the therapeutic intervention of inflammatory conditions or malignancies of hematopoietic origin, since β2 integrins are expressed mainly by leukocytes. We identified a novel technique for screening small-molecule libraries against β2 integrins, and by using this technique we identified a novel αMβ2 integrin-binding chemical (IMB-10). IMB-10 significantly enhances leukocyte adhesion and inhibits their motility. We also demonstrated that IMB-10 can be used to inhibit inflammation and lymphoma growth in vivo. Interestingly, IMB-10 also reduced leukocyte tumor infiltration and inhibited tumor invasion.
Resumo:
Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10−8), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ~2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
Resumo:
In our recent paper [1], we discussed some potential undesirable consequences of public data archiving (PDA) with specific reference to long-term studies and proposed solutions to manage these issues. We reaffirm our commitment to data sharing and collaboration, both of which have been common and fruitful practices supported for many decades by researchers involved in long-term studies. We acknowledge the potential benefits of PDA (e.g., [2]), but believe that several potential negative consequences for science have been underestimated [1] (see also 3 and 4). The objective of our recent paper [1] was to define practices to simultaneously maximize the benefits and minimize the potential unwanted consequences of PDA.
Resumo:
BACKGROUND There has been intensive debate whether migraine with aura (MA) and migraine without aura (MO) should be considered distinct subtypes or part of the same disease spectrum. There is also discussion to what extent migraine cases collected in specialised headache clinics differ from cases from population cohorts, and how female cases differ from male cases with respect to their migraine. To assess the genetic overlap between these migraine subgroups, we examined genome-wide association (GWA) results from analysis of 23,285 migraine cases and 95,425 population-matched controls. METHODS Detailed heterogeneity analysis of single-nucleotide polymorphism (SNP) effects (odds ratios) between migraine subgroups was performed for the 12 independent SNP loci significantly associated (p < 5 x 10(-8); thus surpassing the threshold for genome-wide significance) with migraine susceptibility. Overall genetic overlap was assessed using SNP effect concordance analysis (SECA) at over 23,000 independent SNPs. RESULTS: Significant heterogeneity of SNP effects (p het < 1.4 x 10(-3)) was observed between the MA and MO subgroups (for SNP rs9349379), and between the clinic- and population-based subgroups (for SNPs rs10915437, rs6790925 and rs6478241). However, for all 12 SNPs the risk-increasing allele was the same, and SECA found the majority of genome-wide SNP effects to be in the same direction across the subgroups. CONCLUSIONS Any differences in common genetic risk across these subgroups are outweighed by the similarities. Meta-analysis of additional migraine GWA datasets, regardless of their major subgroup composition, will identify new susceptibility loci for migraine.