997 resultados para optical parametric chirped-pulse amplification
Resumo:
We studied two of the possible factors which can interfere with specific DNA amplification in a peripheral-blood PCR assay used for the diagnosis of human brucellosis. We found that high concentrations of leukocyte DNA and heme compounds inhibit PCR. These inhibitors can be efficiently suppressed by increasing the number of washings to four or five and decreasing the amount of total DNA to 2 to 4 microg, thereby avoiding false-negative results.
Resumo:
The aim of this study was to extract multi-parametric measures characterizing different features of sit-to-stand (Si-St) and stand-to-sit (St-Si) transitions in older persons, using a single inertial sensor attached to the chest. Investigated parameters were transition's duration, range of trunk tilt, smoothness of transition pattern assessed by its fractal dimension, and trunk movement's dynamic described by local wavelet energy. A measurement protocol with a Si-St followed by a St-Si postural transition was performed by two groups of participants: the first group (N=79) included Frail Elderly subjects admitted to a post-acute rehabilitation facility and the second group (N=27) were healthy community-dwelling elderly persons. Subjects were also evaluated with Tinetti's POMA scale. Compared to Healthy Elderly persons, frail group at baseline had significantly longer Si-St (3.85±1.04 vs. 2.60±0.32, p=0.001) and St-Si (4.08±1.21 vs. 2.81±0.36, p=0.001) transition's duration. Frail older persons also had significantly decreased smoothness of Si-St transition pattern (1.36±0.07 vs. 1.21±0.05, p=0.001) and dynamic of trunk movement. Measurements after three weeks of rehabilitation in frail older persons showed that smoothness of transition pattern had the highest improvement effect size (0.4) and discriminative performance. These results demonstrate the potential interest of such parameters to distinguish older subjects with different functional and health conditions.
Resumo:
Aortic stiffness is an independent predictor factor for cardiovascular risk. Different methods for determining pulse wave velocity (PWV) are used, among which the most common are mechanical methods such as SphygmoCor or Complior, which require specific devices and are limited by technical difficulty in obtaining measurements. Doppler guided by 2D ultrasound is a good alternative to these methods. We studied 40 patients (29 male, aged 21 to 82 years) comparing the Complior method with Doppler. Agreement of both devices was high (R = 0.91, 0.84-0.95, 95% CI). The reproducibility analysis revealed no intra-nor interobserver differences. Based on these results, we conclude that Doppler ultrasound is a reliable and reproducible alternative to other established methods for themeasurement of aortic PWV
Resumo:
Nonlinear optical nanocrystals have been recently introduced as a promising alternative to fluorescent probes for multiphoton microscopy. We present for the first time a complete survey of the properties of five nanomaterials (KNbO(3), LiNbO(3), BaTiO(3), KTP, and ZnO), describing their preparation and stabilization and providing quantitative estimations of their nonlinear optical response. In the light of their prospective use as biological and clinical markers, we assess their biocompatibility on human healthy and cancerous cell lines. Finally, we demonstrate the great potential for cell imaging of these inherently nonlinear probes in terms of optical contrast, wavelength flexibility, and signal photostability.
Resumo:
A general reduced dimensionality finite field nuclear relaxation method for calculating vibrational nonlinear optical properties of molecules with large contributions due to anharmonic motions is introduced. In an initial application to the umbrella (inversion) motion of NH3 it is found that difficulties associated with a conventional single well treatment are overcome and that the particular definition of the inversion coordinate is not important. Future applications are described
Resumo:
RESUMEDurant la phase de récupération d'un exercice de course à pied d'intensité maximale ou submaximale, une augmentation de la pression artérielle systolique centrale (aortique) résultant de la réflexion des ondes de pouls sur l'arbre vasculaire est constatée chez l'individu en bonne santé. En diastole cependant, l'impact de la réflexion de ces ondes de pouls sur la pression centrale demeure inconnu durant la récupération d'un exercice.Nous avons évalué les ondes de pouls centrales systolique et diastolique chez onze athlètes d'endurance durant la phase de récupération d'un exercice de course à pied dans des conditions d'effort maximal (sur tapis de course) et lors d'un effort submaximal lors d'une course à pied de 4000 mètres en plein air sur terrain mixte.Pour chaque sujet et lors des deux exercices, l'onde de pouls a été mesurée au niveau radial par tonométrie d'aplanation durant une phase de repos précédant l'exercice, puis à 5, 15, 25, 35 et 45 minutes après la fin de l'exercice. En utilisant une fonction mathématique de transfert, l'onde de pouls centrale a été extrapolée à partir de l'onde de pouls radiale. En compilant la forme de l'onde de pouls centrale avec une mesure simultanée de la pression artérielle brachiale, un index d'augmentation de l'onde de pouls en systole (Alx) et en diastole (Als) peut être calculé, reflétant l'augmentation des pressions résultant de la réflexion des ondes sur l'arbre vasculaire périphérique.A 5 minutes de la fin de l'exercice, les deux index ont été mesurés moindres que ceux mesurés lors de la phase précédant celui-ci. Lors des mesures suivantes, Alx est resté bas, alors que Aid a progressivement augmenté pour finalement dépasser la valeur de repos après 45 minutes de récupération. Le même phénomène a été constaté pour les deux modalités d'exercice (maximal ou submaximal). Ainsi, au-delà de quelques minutes de récupération après un exercice de course d'intensité maximale ou submaximale, nous avons montré par ces investigations que les ondes de pouls réfléchies en périphérie augmentent de façon sélective la pression centrale en diastole chez l'athlète d'endurance.ABSTRACTDuring recovery from a maximal or submaximal aerobic exercise, augmentation of central (aortic) systolic pressure by reflected pressure waves is blunted in healthy humans. However, the extent to which reflected pressure waves modify the central pulse in diastole in these conditions remains unknown. We evaluated systolic and diastolic central reflected waves in 11 endurance-trained athletes on recovery from a maximal running test on a treadmill (treadmill-max) and a 4000m run in field conditions. On both occasions in each subject, the radial pulse was recorded with applanation tonometry in the resting preexercise state and then 5, 15, 25, 35, and 45 minutes after exercise termination. From the central waveform, as reconstructed by application of a generalized transfer function, we computed a systolic (Alx) and a diastolic index (Aid) of pressure augmentation by reflections. At 5 minutes, both indices were below preexercise. At further time-points, Alx remained low, while Aid progressively increased, to overshoot above preexercise at 45 minutes. The same behavior was observed with both exercise types. Beyond the first few minutes of recovery following either maximal or submaximal aerobic exercise, reflected waves selectively augment the central pressure pulse in diastole, at least in endurance- trained athletes.
Resumo:
Three conjugated organic molecules that span a range of polarity and valence-bond/charge transfer characteristics were studied. It was found that dispersion can be insignificant, and that adequate treatment can be achieved with frequency-dependent field-induced vibrational coordinates (FD-FICs)
Resumo:
Electrical property derivative expressions are presented for the nuclear relaxation contribution to static and dynamic (infinite frequency approximation) nonlinear optical properties. For CF4 and SF6, as opposed to HF and CH4, a term that is quadratic in the vibrational anharmonicity (and not previously evaluated for any molecule) makes an important contribution to the static second vibrational hyperpolarizability of CF4 and SF6. A comparison between calculated and experimental values for the difference between the (anisotropic) Kerr effect and electric field induced second-harmonic generation shows that, at the Hartree-Fock level, the nuclear relaxation/infinite frequency approximation gives the correct trend (in the series CH4, CF4, SF6) but is of the order of 50% too small
Resumo:
The vibrational configuration interaction method used to obtain static vibrational (hyper)polarizabilities is extended to dynamic nonlinear optical properties in the infinite optical frequency approximation. Illustrative calculations are carried out on H2 O and N H3. The former molecule is weakly anharmonic while the latter contains a strongly anharmonic umbrella mode. The effect on vibrational (hyper)polarizabilities due to various truncations of the potential energy and property surfaces involved in the calculation are examined
Resumo:
A variational approach for reliably calculating vibrational linear and nonlinear optical properties of molecules with large electrical and/or mechanical anharmonicity is introduced. This approach utilizes a self-consistent solution of the vibrational Schrödinger equation for the complete field-dependent potential-energy surface and, then, adds higher-level vibrational correlation corrections as desired. An initial application is made to static properties for three molecules of widely varying anharmonicity using the lowest-level vibrational correlation treatment (i.e., vibrational Møller-Plesset perturbation theory). Our results indicate when the conventional Bishop-Kirtman perturbation method can be expected to break down and when high-level vibrational correlation methods are likely to be required. Future improvements and extensions are discussed
Resumo:
The level of ab initio theory which is necessary to compute reliable values for the static and dynamic (hyper)polarizabilities of three medium size π-conjugated organic nonlinear optical (NLO) molecules is investigated. With the employment of field-induced coordinates in combination with a finite field procedure, the calculations were made possible. It is stated that to obtain reasonable values for the various individual contributions to the (hyper)polarizability, it is necessary to include electron correlation. Based on the results, the convergence of the usual perturbation treatment for vibrational anharmonicity was examined
Resumo:
Initial convergence of the perturbation series expansion for vibrational nonlinear optical (NLO) properties was analyzed. The zero-point vibrational average (ZPVA) was obtained through first-order in mechanical plus electrical anharmonicity. Results indicated that higher-order terms in electrical and mechanical anharmonicity can make substantial contributions to the pure vibrational polarizibility of typical NLO molecules
Resumo:
IMPLICATIONS: A new combined ear sensor was tested for accuracy in 20 critically ill children. It provides noninvasive and continuous monitoring of arterial oxygen saturation, arterial carbon dioxide tension, and pulse rate. The sensor proved to be clinically accurate in the tested range.
Resumo:
This is a participant study, quasi-experimental, of a before and after type. A quantitative approach of biophysiological measures was used, represented by the saturation of oxygen measured by pulse oximeter (SpO2), and recorded on three occasions: before, during and after the bedbath in critically ill patients hospitalized at the ICU of a University Hospital in Brazil. Objective: to compare the SpO2 in various stages of the bath, with and without control of water temperature. Data collection was performed between December 2007 and April 2008 on a convenience sample consisting of 30 patients aged over 18 who had classification in TISS-28 from level II. Results show that water temperature control means a lower variation of SpO2 (p<0.05). No marked differences in variation of saturation between men and women or between age groups were established. In conclusion, heated and constant water temperature during the bedbath is able to minimize the fall of SpO2 that occurs while handling patients during procedures.