948 resultados para micro-raman spectroscopy
Resumo:
The interactions between outdoor bronzes and the environment, which lead to bronze corrosion, require a better understanding in order to design effective conservation strategies in the Cultural Heritage field. In the present work, investigations on real patinas of the outdoor monument to Vittorio Bottego (Parma, Italy) and laboratory studies on accelerated corrosion testing of inhibited (by silane-based films, with and without ceria nanoparticles) and non-inhibited quaternary bronzes are reported and discussed. In particular, a wet&dry ageing method was used both for testing the efficiency of the inhibitor and for patinating bronze coupons before applying the inhibitor. A wide range of spectroscopic techniques has been used, for characterizing the core metal (SEM+EDS, XRF, AAS), the corroded surfaces (SEM+EDS, portable XRF, micro-Raman, ATR-IR, Py-GC-MS) and the ageing solutions (AAS). The main conclusions were: 1. The investigations on the Bottego monument confirmed the differentiation of the corrosion products as a function of the exposure geometry, already observed in previous works, further highlighting the need to take into account the different surface features when selecting conservation procedures such as the application of inhibitors (i.e. the relative Sn enrichment in unsheltered areas requires inhibitors which effectively interact not only with Cu but also with Sn). 2. The ageing (pre-patination) cycle on coupons was able to reproduce the relative Sn enrichment that actually happens in real patinated surfaces, making the bronze specimens representative of the real support for bronze inhibitors. 3. The non-toxic silane-based inhibitors display a good protective efficiency towards pre-patinated surfaces, differently from other widely used inhibitors such as benzotriazole (BTA) and its derivatives. 4. The 3-mercapto-propyl-trimethoxy-silane (PropS-SH) additivated with CeO2 nanoparticles generally offered a better corrosion protection than PropS-SH.
Resumo:
The aim of this project was to achieve a deep understanding of the mechanisms by which Baltic amber degrades, in order to develop techniques for preventive conservation of archaeological amber objects belonging to the National Museum of Denmark’s collections. To examine deterioration of Baltic amber, a starting point was to identify and monitor surface and bulk properties which are affected during degradation. The way to operate consisted of the use of accelerated ageing to initiate degradation of raw Baltic amber samples in different conditions of relative humidity, oxygen exposure or pH and, successively, of the use of non/micro-destructive techniques to identify and quantify changes in visual, chemical and structural properties. A large piece of raw Baltic amber was used to prepare several test samples for two different kinds of accelerated ageing: thermal-ageing and photo-ageing. During the ageing, amber samples were regularly examined through several analytical techniques related to different information: appearance/colour change by visual examination, photography and colorimetry; chemical change by infrared spectroscopy, Raman spectroscopy and elemental analysis; rate of oxidation by oxygen measurement; qualitative analysis of released volatiles by gas chromatography – mass spectrometry. The obtained results were analysed through both critical evaluation and statistical study. After the interpretation of the achieved data, the main relations between amber and environmental factors during the degradation process became clearer and it was possible to identify the major pathways by which amber degrades, such as hydrolysis of esters into alcohols and carboxylic acids, thermal-oxidation and photo-oxidation of terpenoid components, depolymerisation and decomposition of the chemical structure. At the end it was possible to suggest a preventive conservation strategy based on the control of climatic, atmospheric and lighting parameters in the environment where Baltic amber objects are stored and displayed.
Resumo:
In der vorliegenden Arbeit wird die Struktur von Alkali- und Erdalkalisilicatglaesern bei hohen Temperaturen (bis 1800 K) mit Hilfe der Raman-Spektroskopie untersucht. Ein wesentlicher Teil der vorliegenden Arbeit besteht in dem Aufbau einer Hochtemperatureinrichtung, die es erlaubt, Raman-Spektren von Silicatglaesern bei sehr hohen Temperaturen zu messen. Mit der Hochtemperatur-Raman-Spektroskopie an Silicatglaesern sind erhebliche experimentelle Schwierigkeiten verbunden: Die thermische Strahlung der Probe überlagert sich mit dem Raman-Spektrum.Die Temperaturbestimmung der Glasprobe, die einen Durchmesser von nur 0,8 mm hat, erfolgt durch den Vergleich der Stokes- und Anti-Stokes-Raman-Intensitaeten einer intensiven Linie einer Referenzprobe. Die Natriumsilicatglaeser werden detailliert untersucht und die Verteilung der Struktureinheiten in den Natriumsilicatglaesern wird zwischen Zimmertemperatur und 900 K bestimmt. Aus der Verteilung der Strukturelemente wird eine Gleichgewichtskonstante K berechnet, welche die Disproportionierungsreaktion zwischen den Struktureinheiten in den Glaesern beschreibt. Der Wert für die Reaktionsenthalpie liegt im untersuchten Konzentrationsbereich zwischen 0 und 28 kJ/mol und haengt systematisch von der Zusammensetzung ab. Die Reaktionsenthalpie nimmt mit zunehmendem Natriumoxid-Gehalt zu.Die quantitative Auswertung der Raman-Spektren der Kaliumsilicatglaeser und der Bariumsilicatglaeser ist auf Grund deren Kristallisation bei hohen Temperaturen mit Problemen behaftet.
Resumo:
n this work, three Cypraea species (C. talpa, C. tigris and C. zebra) were exhaustively studied. The shells have been separated in the structural layers. The mineralogy, ultra- and micro-structure of each layer were analyzed by Confocal Laser Scanning Microscopy (CLSM), Scanning Electron Microscopy (SEM), X-Ray Diffractometry (XRD) and Raman Spectroscopy (RS). The presence of biologically relevant trace metals (Mn, Co, Fe, Zn, Cr, etc.) has been investigated using Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) as detection tool. A new method has been developed and optimized to extract and analyze the soluble organic matrix (SOM) of the shell. Although the molecular nature of the SOM is not really known, it contains at least large protein fraction, if not only consists of proteins. The extracted matrices were compared between layers and species using Size Exclusion High Performance Liquid Chromatography coupled with Ultra Violet Spectrometry (SE-HPLC-UV), Gel electrophoresis (GE) and protein quantification tests. For the first time to our knowledge the association of trace elements to the protein in the SOM of the shell was studied using hyphenated on line as well as combined off line techniques and validated through inter-comparison tests between the different methods applied. Interesting correlations between the trace element concentration, the microstructure and the protein content were directly and indirectly detected. The metals Cu, Ni, Co and Zn have shown to bind to the SOM extracted from C. talpa, C. tigris and C. zebra shells. Within the conclusions of this work it was demonstrated that these protein-metal-complexes (or metal containing proteins) change from one layer to the other and are different between the three snails analyzed. In addition, the complexes are clearly related only to certain protein fractions of the SOM, and not to the whole SOM observed. These fractions and show not to be very metal-specific (i.e. some of these fractions bind two or three different metals).
Resumo:
The membrane protein Cytochrome c Oxidase (CcO) is one of the most important functional bio-molecules. It appears in almost every eukaryotic cell and many bacteria. Although the different species differ in the number of subunits, the functional differences are merely marginal. CcO is the terminal link in the electron transfer pathway of the mitochondrial respiratory chain. Electrons transferred to the catalytic center of the enzyme conduce to the reduction of molecular oxygen to water. Oxygen reduction is coupled to the pumping of protons into the inter-membrane space and hence generates a difference in electrochemical potential of protons across the inner mitochondrial membrane. This potential difference drives the synthesis of adenosine triphosphate (ATP), which is the universal energy carrier within all biological cells. rnrnThe goal of the present work is to contribute to a better understanding of the functional mechanism of CcO by using time-resolved surface enhanced resonance Raman spectroscopy (TR-SERRS). Despite intensive research effort within the last decades, the functional mechanism of CcO is still subject to controversial discussions. It was the primary goal of this dissertation to initiate electron transfer to the redox centers CuA, heme a, heme a3 and CuB electrochemically and to observe the corresponding redox transitions in-situ with a focus on the two heme structures by using SERRS. A measuring cell was developed, which allowed combination of electrochemical excitation with Raman spectroscopy for the purpose of performing the accordant measurements. Cytochrome c was used as a benchmark system to test the new measuring cell and to prove the feasibility of appropriate Raman measurements. In contrast to CcO the heme protein cc contains only a single heme structure. Nevertheless, characteristic Raman bands of the hemes can be observed for both proteins.rnrnIn order to investigate CcO it was immobilized on top of a silver substrate and embedded into an artificial membrane. The catalytic activity of CcO and therefore the complete functional capability of the enzyme within the biomimetic membrane architecture was verified using cyclic voltammetry. Raman spectroscopy was performed using a special nano-structured silver surface, which was developed within the scope of the present work. This new substrate combined two fundamental properties. It facilitated the formation of a protein tethered bilayer lipid membrane (ptBLM) and it allowed obtaining Raman spectra with sufficient high signal-to-noise ratios.rnSpectro-electrochemical investigations showed that at open circuit potential the enzyme exists in a mixed-valence state, with heme a and and heme a3 in the reduced and oxidized state, respectively. This was considered as an intermediate state between the non-activated and the fully activated state of CcO. Time-resolved SERRS measurements revealed that a hampered electron transfer to the redox center heme a3 characterizes this intermediate state.rn
Resumo:
We carried out a comprehensive study of Au(1 1 1) oxidation–reduction in the presence of (hydrogen-) sulfate ions on ideally smooth and stepped Au(S)[n(1 1 1)-(1 1 1)] single crystal electrodes using cyclic voltammetry, in situ scanning tunneling microscopy (STM) and vibration spectroscopy, such as surface-enhanced infrared absorption spectroscopy (SEIRAS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Surface structure changes and the role of surface defects in the potential regions of double layer charging and gold oxidation/reduction are discussed based on cyclic voltammetry and in situ STM data. SEIRAS and SHINERS provide complementary information on the chemical nature of adsorbates. In particular, the potential-dependent formation and stability ranges of adsorbed sulfate, hydroxide-species and of gold surface oxide could be resolved in detail. Based on our experimental observations, we proposed new and extended mechanisms of gold surface oxidation and reduction in 1.0 M H2SO4 and 1.0 M Na2SO4.
Resumo:
Group IV semiconductor nanowires are characterized by Raman spectroscopy. The results are analyzed in terms of the heating induced by the laser beam on the nanowires. By solving the heat transport equation one can simulate the temperature reached by the NWs under the exposure to a laser beam. The results are illustrated with Si and Si1-xGex nanowires. Both bundles of nanowires and individual nanowires are studied. The main experimental conditions contributing to the nanowire heating are discussed
Resumo:
Structural changes in the retinal chromophore during the formation of the bathorhodopsin intermediate (bathoRT) in the room-temperature rhodopsin (RhRT) photosequence (i.e., vision) are examined using picosecond time-resolved coherent anti-Stokes Raman scattering. Specifically, the retinal structure assignable to bathoRT following 8-ps excitation of RhRT is measured via vibrational Raman spectroscopy at a 200-ps time delay where the only intermediate present is bathoRT. Significant differences are observed between the C=C stretching frequencies of the retinal chromophore at low temperature where bathorhodopsin is stabilized and at room temperature where bathorhodopsin is a transient species in the RhRT photosequence. These vibrational data are discussed in terms of the formation of bathoRT, an important step in the energy storage/transduction mechanism of RhRT.
Resumo:
Compósitos de polímeros de polietileno linear de baixa densidade (LLDPE) possuem baixo desempenho mecânico devido principalmente à sua fraca interação, intermolecular, entre a cadeia polimérica e a carga. Uma maneira de minimizar esse baixo desempenho mecânico se faz com a mudança da estrutura química da poliolefina com a inserção de um grupo polar a sua cadeia, ou seja, faz-se a funcionalização das poliolefinas. O sistema de funcionalização adotado foi o processamento reativo, no qual foi utilizado para este sistema de processamento o misturador de dupla rosca acoplado a um reâmetro de torque. Neste trabalho, os grupos polares inseridos à cadeia dos polímeros de LLDPE\'s de copolímeros 1-buteno e 1-octeno (LLDPE-but e LLDPE-oct) foram o anidrido maléico (AM) e o anidrido tetrahidroftálico (ATF). Para a confecção dos compósitos foram utilizadas as cargas de microesferas de sílica modificada, no qual foi inserido compostos silanados em sua superfície (3-aminopropilsilano - APS - e trimetoxiclorosilano TMCISi) para estudo de interação com as poliolefinas funcionalizadas. Neste trabalho foram realizados ensaios de caracterização térmica, vibracional além de análises de torque do polímero fundido, análises do grau de reticulação e ensaios mecânicos de tração por elongação. Na caracterização térmica foram utilizadas as técnicas: termogravimetria (TG) e calorimetria exploratória diferencial (DSC). Na caracterização vibracional utilizou-se a espectroscopia fotoacústica no infravermelho (PAS-IR) e a espectroscopia de espalhamento Raman. Pela técnica PAS-IR foi possível comprovar a inserção dos anidridos à cadeia das poliolefinas assim como foi possível verificar a interação entre o polímero funcionalizado e a carga. Pelas técnicas térmicas de DSC e TG foi possível verificar mudanças das propriedades do compósito frente aos polímeros originais ou funcionalizados. Os ensaios mecânicos comprovaram que os compósitos de polímeros funcionalizados possuem maior elongação e tensão à ruptura comparada aos compósitos dos LLDPE\'s não funcionalizados
Resumo:
L’électrofilage est une technique de mise en œuvre efficace et versatile qui permet la production de fibres continues d’un diamètre typique de quelques centaines de nanomètres à partir de l’application d’un haut voltage sur une solution concentrée de polymères enchevêtrés. L’évaporation extrêmement rapide du solvant et les forces d’élongation impliquées dans la formation de ces fibres leur confèrent des propriétés hors du commun et très intéressantes pour plusieurs types d’applications, mais dont on commence seulement à effleurer la surface. À cause de leur petite taille, ces matériaux ont longtemps été étudiés uniquement sous forme d’amas de milliers de fibres avec les techniques conventionnelles telles que la spectroscopie infrarouge ou la diffraction des rayons X. Nos connaissances de leur comportement proviennent donc toujours de la convolution des propriétés de l’amas de fibres et des caractéristiques spécifiques de chacune des fibres qui le compose. Les études récentes à l’échelle de la fibre individuelle ont mis en lumière des comportements inhabituels, particulièrement l’augmentation exponentielle du module avec la réduction du diamètre. L’orientation et, de manière plus générale, la structure moléculaire des fibres sont susceptibles d’être à l'origine de ces propriétés, mais d’une manière encore incomprise. L’établissement de relations structure/propriétés claires et l’identification des paramètres qui les influencent représentent des défis d’importance capitale en vue de tirer profit des caractéristiques très particulières des fibres électrofilées. Pour ce faire, il est nécessaire de développer des méthodes plus accessibles et permettant des analyses structurales rapides et approfondies sur une grande quantité de fibres individuelles présentant une large gamme de diamètre. Dans cette thèse, la spectroscopie Raman confocale est utilisée pour l’étude des caractéristiques structurales, telles que l’orientation moléculaire, la cristallinité et le désenchevêtrement, de fibres électrofilées individuelles. En premier lieu, une nouvelle méthodologie de quantification de l’orientation moléculaire par spectroscopie Raman est développée théoriquement dans le but de réduire la complexité expérimentale de la mesure, d’étendre la gamme de matériaux pour lesquels ces analyses sont possibles et d’éliminer les risques d’erreurs par rapport à la méthode conventionnelle. La validité et la portée de cette nouvelle méthode, appelée MPD, est ensuite démontrée expérimentalement. Par la suite, une méthodologie efficace permettant l’étude de caractéristiques structurales à l’échelle de la fibre individuelle par spectroscopie Raman est présentée en utilisant le poly(éthylène téréphtalate) comme système modèle. Les limites de la technique sont exposées et des stratégies expérimentales pour les contourner sont mises de l’avant. Les résultats révèlent une grande variabilité de l'orientation et de la conformation d'une fibre à l'autre, alors que le taux de cristallinité demeure systématiquement faible, démontrant l'importance et la pertinence des études statistiques de fibres individuelles. La présence de chaînes montrant un degré d’enchevêtrement plus faible dans les fibres électrofilées que dans la masse est ensuite démontrée expérimentalement pour la première fois par spectroscopie infrarouge sur des amas de fibres de polystyrène. Les conditions d'électrofilage favorisant ce phénomène structural, qui est soupçonné d’influencer grandement les propriétés des fibres, sont identifiées. Finalement, l’ensemble des méthodologies développées sont appliquées sur des fibres individuelles de polystyrène pour l’étude approfondie de l’orientation et du désenchevêtrement sur une large gamme de diamètres et pour une grande quantité de fibres. Cette dernière étude permet l’établissement de la première relation structure/propriétés de ces matériaux, à l’échelle individuelle, en montrant clairement le lien entre l’orientation moléculaire, le désenchevêtrement et le module d'élasticité des fibres.
Resumo:
L’électrofilage est une technique de mise en œuvre efficace et versatile qui permet la production de fibres continues d’un diamètre typique de quelques centaines de nanomètres à partir de l’application d’un haut voltage sur une solution concentrée de polymères enchevêtrés. L’évaporation extrêmement rapide du solvant et les forces d’élongation impliquées dans la formation de ces fibres leur confèrent des propriétés hors du commun et très intéressantes pour plusieurs types d’applications, mais dont on commence seulement à effleurer la surface. À cause de leur petite taille, ces matériaux ont longtemps été étudiés uniquement sous forme d’amas de milliers de fibres avec les techniques conventionnelles telles que la spectroscopie infrarouge ou la diffraction des rayons X. Nos connaissances de leur comportement proviennent donc toujours de la convolution des propriétés de l’amas de fibres et des caractéristiques spécifiques de chacune des fibres qui le compose. Les études récentes à l’échelle de la fibre individuelle ont mis en lumière des comportements inhabituels, particulièrement l’augmentation exponentielle du module avec la réduction du diamètre. L’orientation et, de manière plus générale, la structure moléculaire des fibres sont susceptibles d’être à l'origine de ces propriétés, mais d’une manière encore incomprise. L’établissement de relations structure/propriétés claires et l’identification des paramètres qui les influencent représentent des défis d’importance capitale en vue de tirer profit des caractéristiques très particulières des fibres électrofilées. Pour ce faire, il est nécessaire de développer des méthodes plus accessibles et permettant des analyses structurales rapides et approfondies sur une grande quantité de fibres individuelles présentant une large gamme de diamètre. Dans cette thèse, la spectroscopie Raman confocale est utilisée pour l’étude des caractéristiques structurales, telles que l’orientation moléculaire, la cristallinité et le désenchevêtrement, de fibres électrofilées individuelles. En premier lieu, une nouvelle méthodologie de quantification de l’orientation moléculaire par spectroscopie Raman est développée théoriquement dans le but de réduire la complexité expérimentale de la mesure, d’étendre la gamme de matériaux pour lesquels ces analyses sont possibles et d’éliminer les risques d’erreurs par rapport à la méthode conventionnelle. La validité et la portée de cette nouvelle méthode, appelée MPD, est ensuite démontrée expérimentalement. Par la suite, une méthodologie efficace permettant l’étude de caractéristiques structurales à l’échelle de la fibre individuelle par spectroscopie Raman est présentée en utilisant le poly(éthylène téréphtalate) comme système modèle. Les limites de la technique sont exposées et des stratégies expérimentales pour les contourner sont mises de l’avant. Les résultats révèlent une grande variabilité de l'orientation et de la conformation d'une fibre à l'autre, alors que le taux de cristallinité demeure systématiquement faible, démontrant l'importance et la pertinence des études statistiques de fibres individuelles. La présence de chaînes montrant un degré d’enchevêtrement plus faible dans les fibres électrofilées que dans la masse est ensuite démontrée expérimentalement pour la première fois par spectroscopie infrarouge sur des amas de fibres de polystyrène. Les conditions d'électrofilage favorisant ce phénomène structural, qui est soupçonné d’influencer grandement les propriétés des fibres, sont identifiées. Finalement, l’ensemble des méthodologies développées sont appliquées sur des fibres individuelles de polystyrène pour l’étude approfondie de l’orientation et du désenchevêtrement sur une large gamme de diamètres et pour une grande quantité de fibres. Cette dernière étude permet l’établissement de la première relation structure/propriétés de ces matériaux, à l’échelle individuelle, en montrant clairement le lien entre l’orientation moléculaire, le désenchevêtrement et le module d'élasticité des fibres.
Resumo:
A range of polyimides have been subjected to electron beam radiolysis at different temperatures. These polyimides were chemically designed to suit space applications, being either transparent or having groups which provide oxidation resistance. The structural changes that occur in the polyimides, when subjected to electron beam irradiation doses up to 18.5 MGy and up to temperatures close to their glass transition temperatures, were studied using FT-Raman spectroscopy. The range of polyimides studied included a series of perfluoropolyimides, a silicon-modified polyimide, and Ultem. The changes in the Raman peak intensities of the different groups indicated scission reactions involving the imide rings and ether linkages. (c) 2006 Wiley Periodicals, Inc.
Resumo:
The present study gives a contribution to the knowledge on the Na-feldspar and plagioclases, extending the database of the Raman spectra of plagioclases with different chemical compositions and structural orders. This information may be used for the future planetary explorations by “rovers”, for the investigation of ceramics nanocrystal materials and for the mineralogical phase identification in sediments. Na-feldspar and plagioclase solid solution have been investigated by Raman spectroscopy in order to determine the relationships between the vibrational changes and the plagioclase crystal chemistry and structure. We focused on the Raman micro-spectroscopy technique, being a non-destructive method, suited for contactless analysis with high spatial resolution. Chemical and structural analyses have been performed on natural samples to test the usefulness of Raman spectroscopy as a tool in the study of the pressure-induced structural deformations, the disordering processes due to change in the Al-Si distribution in the tetrahedral sites and, finally, in the determination of the anorthitic content (Anx) in plagioclase minerals. All the predicted 39 Ag Raman active modes have been identified and assigned to specific patterns of atomic vibrational motion. A detailed comparison between experimental and computed Raman spectra has been performed and previous assignments have been revised, solving some discrepancies reported in recent literature. The ab initio calculation at the hybrid HF/DFT level with the WC1LYP Hamiltonian has proven to give excellent agreement between calculated and experimentally measured Raman wavenumbers and intensities in triclinic minerals. A short digression on the 36 infrared active modes of Na-feldspar has been done too. The identification of all 39 computed Raman modes in the experimentally measured spectra of the fully ordered Na-feldspar, known as low albite, along with the detailed description of each vibrational mode, has been essential to extend the comparative analysis to the high pressure and high temperature structural forms of albite, which reflect the physical–chemical conditions of the hosting rocks. The understanding of feldspar structure response to pressure and temperature is crucial in order to constrain crustal behaviour. The compressional behaviour of the Na-feldspar has been investigated for the first time by Raman spectroscopy. The absence of phase transitions and the occurrence of two secondary compression mechanisms acting at different pressures have been confirmed. Moreover, Raman data suggest that the internal structural changes are confined to a small pressure interval, localized around 6 GPa, not spread out from 4 to 8 GPa as suggested by previous X-rays studies on elasticity. The dominant compression mechanisms act via tetrahedral tilting, while the T-O bond lengths remain nearly constant at moderate compressional regimes. At the spectroscopic level, this leads to the strong pressure dependencies of T-O-T bending modes, as found for the four modes at 478, 508, 578 and 815 cm-1. The Al-Si distribution in the tetrahedral sites affects also the Raman spectrum of Na-feldspar. In particular, peak broadening is more sensitive than peak position to changes in the degree of order. Raman spectroscopy is found to be a good probe for local ordering, in particular being sensitive to the first annealing steps, when the macroscopic order parameter is still high. Even though Raman data are scattered and there are outliers in the estimated values of the degree of order, the average peak linewidths of the Na-feldspar characteristic doublet band, labelled here as υa and υb, as a function of the order parameter Qod show interesting trends: both peak linewidths linearly increase until saturation. From Qod values lower than 0.6, peak broadening is no more affected by the Al-Si distribution. Moreover, the disordering process is found to be heterogeneous. SC-XRD and Raman data have suggested an inter-crystalline inhomogeneity of the samples, i.e., the presence of regions with different defect density on the micrometric scale. Finally, the influence of Ca-Na substitution in the plagioclase Raman spectra has been investigated. Raman spectra have been collected on a series of well characterized natural, low structural plagioclases. The variations of the Raman modes as a function of the chemical composition and the structural order have been determined. The number of the observed Raman bands at each composition gives information about the unit-cell symmetry: moving away from the C1 structures, the number of the Raman bands enhances, as the number of formula units in the unit cell increases. The modification from an “albite-like” Raman spectrum to a more “anorthite-like” spectrum occurs from sample An78 onwards, which coincides with the appearance of c reflections in the diffraction patterns of the samples. The evolution of the Raman bands υa and υb displays two changes in slope at ~An45 and ~An75: the first one occurs between e2 and e1 plagioclases, the latter separates e1 and I1 plagioclases with only b reflections in their diffraction patterns from I1 and P1 samples having b and c reflections too. The first variation represents exactly the e2→e1 phase transitions, whereas the second one corresponds in good approximation to the C1→I1 transition, which has been determined at ~An70 by previous works. The I1→P1 phase transition in the anorthite-rich side of the solid solution is not highlighted in the collected Raman spectra. Variations in peak broadening provide insights into the behaviour of the order parameter on a local scale, suggesting an increase in the structural disorder within the solid solution, as the structures have to incorporate more Al atoms to balance the change from monovalent to divalent cations. All the information acquired on these natural plagioclases has been used to produce a protocol able to give a preliminary estimation of the chemical composition of an unknown plagioclase from its Raman spectrum. Two calibration curves, one for albite-rich plagioclases and the other one for the anorthite-rich plagioclases, have been proposed by relating the peak linewidth of the most intense Raman band υa and the An content. It has been pointed out that the dependence of the composition from the linewidth can be obtained only for low structural plagioclases with a degree of order not far away from the references. The proposed tool has been tested on three mineralogical samples, two of meteoric origin and one of volcanic origin. Chemical compositions by Raman spectroscopy compare well, within an error of about 10%, with those obtained by elemental techniques. Further analyses on plagioclases with unknown composition will be necessary to validate the suggested method and introduce it as routine tool for the determination of the chemical composition from Raman data in planetary missions.
Resumo:
A novel laser electrodispersion (LE) technique was employed to deposit gold nanoparticles onto Si and SiOx surfaces. The LE technique combines laser ablation with cascade fission of liquid metal micro-drops, which results in the formation of nanoparticles upon rapid cooling. The shape and the size distribution of the Au nanoparticles prepared by LE depend on the nature of the support. Gold nanoparticles were also deposited in the channels of microreactors fabricated by wet etching of Si and used as SE(R)RS sensors. The influence of the nanoparticle surface density as well as of the nature of the substrate on the Raman response was studied. At an appropriate surface density of the deposited nanoparticles a significant enhancement of Raman signal was observed showing the possibility to create efficient SERS substrates. Application of microfluidic devices in surface enhanced Raman spectroscopy (SERS) in continuous-flow mode with sensor regeneration is described. © 2011 The Royal Society of Chemistry.
Resumo:
Preliminary work is reported on 2-D and 3-D microstructures written directly with a Yb:YAG 1026 nm femtosecond (fs) laser on bulk chemical vapour deposition (CVD) single-crystalline diamond. Smooth graphitic lines and other structures were written on the surface of a CVD diamond sample with a thickness of 0.7mm under low laser fluences. This capability opens up the opportunity for making electronic devices and micro-electromechanical structures on diamond substrates. The fabrication process was optimised through testing a range of laser energies at a 100 kHz repetition rate with sub-500fs pulses. These graphitic lines and structures have been characterised using optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. Using these analysis techniques, the formation of sp2 and sp3 bonds is explored and the ratio between sp2 and sp3 bonds after fs laser patterning is quantified. We present the early findings from this study and characterise the relationship between the graphitic line formation and the different fs laser exposure conditions. © 2012 Taylor & Francis.