935 resultados para methodologies for greenhouse gases emissions inventory and CO2 capture and storage
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The energy is considered one of the most important elements in the human´s life providing the survival as well as the well being. Nowadays, the technologies destined to generate power burn fossil fuels which pour gases (carbon dioxide among them) that contribute to the global warming phenomenon. Several research groups and universities have been studying different methods for generating power with low carbon dioxide emissions, including the possibility of burning zero-carbon fuels. In this text, it has been put attention to the Advanced Zero Emission Power Plants (AZEP) which separate the CO2 (from the gases involved in the power generation), compress it, dehydrate it and store it in appropriate reservoirs. The goal of this study was to find a possible solution to produce CO from CO2, activated by solar energy; the reaction between CO and steam generates a syngas comprised of H2 and CO2, which can be separated by chemical and/or physical processes. The text also contains a study concerning the compressed air energy storage power plant (CAES) and come up with its modification to C[CO2]ES. This power plant stores CO2 directing it to a reverse combustion process to produce CO which is headed to a syngas reactor to produce CO2 and H2. Hydrogen is separated and carried to the thermal cycle to generate power with low carbon emissions
Resumo:
Smart grids are the focus of major study today because of the necessity of modernization in electrical systems and reduction of greenhouse gas emissions that increases global warming. Reaching the best deployment method, you must first of all know the current electrical system and how to use them for the benefit of this new technology. Preparing the action plan we should be aware of the main points of smart grids in each step of the electricity system - generation, transmission and distribution. Analyzed these topics, this work will focus on the first step in the implementation of the smart grids: the smart meters, tool which is already being implemented in Brazil. The main characteristics and applications of these devices, as well as their communication structure with the core distributors will be showed during the paper. Finally, we present a case study which will be discussed and analyzed based in the results obtained with the implementation of smart meters in the city of Vancouver, Canada, where we have a considerable savings already in the first year, with fully paying the initial investment and still have a profit
Resumo:
Pós-graduação em Química - IQ
Resumo:
Agriculture provides food, fibre and energy, which have been the foundation for the development of all societies. Soil carbon plays an important role in providing essential ecosystem services. Historically, these have been viewed in terms of plant nutrient availability only, with agricultural management being driven to obtain maximum benefits of this soil function. However, recently, agricultural systems have been envisioned to provide a more complete set of ecosystem services, in a win-win situation, in addition to the products normally associated with agriculture. The expansion and growth of agricultural production in Brazil and Argentina brought about a significant loss of soil carbon stocks, and consequently the associated ecosystem services, such as flooding and erosion control, water filtration and storage. There are several examples of soil carbon management for multiple benefits in Brazil and Argentina, with new soil management techniques attempting to reverse this trend by increasing soil carbon (C) stocks. One example is zero tillage, which has the advantage of reducing CO2 emissions from the soil and thus preserving or augmenting C stocks. Crop rotations that include cover crops have been shown to sequester significant amounts of C, both in Brazilian subtropical regions as well as in the Argentinean Pampas. Associated benefits of zero tillage and cover crop rotations include flood and erosion control and improved water filtration and storage. Another positive example is the adoption of no-burning harvest in the vast sugarcane area in Brazil, which also contributes to reduced CO2 emissions, leaving crop residues on the soil surface and thus helping the conservation of essential plant nutrients and improving water storage.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência e Tecnologia Animal - FEIS
Resumo:
This paper deals with the homologation process for obtaining carbon credits through the Clean Development Mechanism (CDM), that regulates the greenhouse gases reductions under the rules of the Kyoto Protocol. The CDM evaluates projects through a project cycle, which begins with the preparation of the Project Design Document (PDD) until the project certification to receive Certified Emission Reductions (CERs), popularly known as carbon credits. This study analyzed the implementation of the system Burner Recorder System for Low Flows of Biogas (QRBBV), developed by Marcelino Junior & Godoy (2009), in an eco-friendly wastewater treatment mini-plant (miniEETERA), built at the site of UNESP - Guaratinguetá SP. The QRBBV system is low cost and high reliability, developed to burn the methane generated at sites of low and variable production of biogas, which is not economically justified their energy recovery. Currently, almost all wastewater generated at the site of the campus is being treated by miniEETERA and, as a result, the biogas originated by this activity is being released into the atmosphere. Therefore, the project activity aims to capture and burn the biogas generated by miniEETERA, reducing the negative effects caused by the methane emissions into the atmosphere and, thus, claim to receive carbon credits. This work aimed to demonstrate the project applicability under CDM through the study and preparation of the PDD, as well as an analysis of the entire project cycle required for homologation. The result of the work obtained an estimate of only 20 CERs per year and proved to be economically unviable for approval through the CDM, since the spending with the approval process would not be compensated with the sale of CERs, mainly due the low carbon price in the world market. From an environmental standpoint, the project is perfectly... (Complete abstract click electronic access below)
Resumo:
Abstract Ethanol is a biofuel that has unique capabilities to mitigate global climate change by reducing greenhouse gas emissions while simultaneously supporting rural economies and decreasing the United States’ dependence on foreign oil. Currently, the state of Nebraska depends on corn ethanol, which may be unsustainable. Cellulosic ethanol is a promising alternative but it is not without its problems, including high production costs and potential environmental damage. This thesis is an attempt to understand the benefits, downfalls, and processes of corn-based and cellulosic ethanol and the potential implications to Nebraska. This research should shed some light on the current obstacles and environmental problems involved with production, as well as evaluate the potential economic benefits to Nebraska, while pointing out issues that should be further researched before implementation.
Resumo:
This paper deals with the homologation process for obtaining carbon credits through the Clean Development Mechanism (CDM), that regulates the greenhouse gases reductions under the rules of the Kyoto Protocol. The CDM evaluates projects through a project cycle, which begins with the preparation of the Project Design Document (PDD) until the project certification to receive Certified Emission Reductions (CERs), popularly known as carbon credits. This study analyzed the implementation of the system Burner Recorder System for Low Flows of Biogas (QRBBV), developed by Marcelino Junior & Godoy (2009), in an eco-friendly wastewater treatment mini-plant (miniEETERA), built at the site of UNESP - Guaratinguetá SP. The QRBBV system is low cost and high reliability, developed to burn the methane generated at sites of low and variable production of biogas, which is not economically justified their energy recovery. Currently, almost all wastewater generated at the site of the campus is being treated by miniEETERA and, as a result, the biogas originated by this activity is being released into the atmosphere. Therefore, the project activity aims to capture and burn the biogas generated by miniEETERA, reducing the negative effects caused by the methane emissions into the atmosphere and, thus, claim to receive carbon credits. This work aimed to demonstrate the project applicability under CDM through the study and preparation of the PDD, as well as an analysis of the entire project cycle required for homologation. The result of the work obtained an estimate of only 20 CERs per year and proved to be economically unviable for approval through the CDM, since the spending with the approval process would not be compensated with the sale of CERs, mainly due the low carbon price in the world market. From an environmental standpoint, the project is perfectly... (Complete abstract click electronic access below)