973 resultados para mathematical functions
Resumo:
We develop new algorithms which combine the rigorous theory of mathematical elasticity with the geometric underpinnings and computational attractiveness of modern tools in geometry processing. We develop a simple elastic energy based on the Biot strain measure, which improves on state-of-the-art methods in geometry processing. We use this energy within a constrained optimization problem to, for the first time, provide surface parameterization tools which guarantee injectivity and bounded distortion, are user-directable, and which scale to large meshes. With the help of some new generalizations in the computation of matrix functions and their derivative, we extend our methods to a large class of hyperelastic stored energy functions quadratic in piecewise analytic strain measures, including the Hencky (logarithmic) strain, opening up a wide range of possibilities for robust and efficient nonlinear elastic simulation and geometry processing by elastic analogy.
Resumo:
The applicability of the white-noise method to the identification of a nonlinear system is investigated. Subsequently, the method is applied to certain vertebrate retinal neuronal systems and nonlinear, dynamic transfer functions are derived which describe quantitatively the information transformations starting with the light-pattern stimulus and culminating in the ganglion response which constitutes the visually-derived input to the brain. The retina of the catfish, Ictalurus punctatus, is used for the experiments.
The Wiener formulation of the white-noise theory is shown to be impractical and difficult to apply to a physical system. A different formulation based on crosscorrelation techniques is shown to be applicable to a wide range of physical systems provided certain considerations are taken into account. These considerations include the time-invariancy of the system, an optimum choice of the white-noise input bandwidth, nonlinearities that allow a representation in terms of a small number of characterizing kernels, the memory of the system and the temporal length of the characterizing experiment. Error analysis of the kernel estimates is made taking into account various sources of error such as noise at the input and output, bandwidth of white-noise input and the truncation of the gaussian by the apparatus.
Nonlinear transfer functions are obtained, as sets of kernels, for several neuronal systems: Light → Receptors, Light → Horizontal, Horizontal → Ganglion, Light → Ganglion and Light → ERG. The derived models can predict, with reasonable accuracy, the system response to any input. Comparison of model and physical system performance showed close agreement for a great number of tests, the most stringent of which is comparison of their responses to a white-noise input. Other tests include step and sine responses and power spectra.
Many functional traits are revealed by these models. Some are: (a) the receptor and horizontal cell systems are nearly linear (small signal) with certain "small" nonlinearities, and become faster (latency-wise and frequency-response-wise) at higher intensity levels, (b) all ganglion systems are nonlinear (half-wave rectification), (c) the receptive field center to ganglion system is slower (latency-wise and frequency-response-wise) than the periphery to ganglion system, (d) the lateral (eccentric) ganglion systems are just as fast (latency and frequency response) as the concentric ones, (e) (bipolar response) = (input from receptors) - (input from horizontal cell), (f) receptive field center and periphery exert an antagonistic influence on the ganglion response, (g) implications about the origin of ERG, and many others.
An analytical solution is obtained for the spatial distribution of potential in the S-space, which fits very well experimental data. Different synaptic mechanisms of excitation for the external and internal horizontal cells are implied.
Resumo:
35 p.
Resumo:
The problem of determining probability density functions of general transformations of random processes is considered in this thesis. A method of solution is developed in which partial differential equations satisfied by the unknown density function are derived. These partial differential equations are interpreted as generalized forms of the classical Fokker-Planck-Kolmogorov equations and are shown to imply the classical equations for certain classes of Markov processes. Extensions of the generalized equations which overcome degeneracy occurring in the steady-state case are also obtained.
The equations of Darling and Siegert are derived as special cases of the generalized equations thereby providing unity to two previously existing theories. A technique for treating non-Markov processes by studying closely related Markov processes is proposed and is seen to yield the Darling and Siegert equations directly from the classical Fokker-Planck-Kolmogorov equations.
As illustrations of their applicability, the generalized Fokker-Planck-Kolmogorov equations are presented for certain joint probability density functions associated with the linear filter. These equations are solved for the density of the output of an arbitrary linear filter excited by Markov Gaussian noise and for the density of the output of an RC filter excited by the Poisson square wave. This latter density is also found by using the extensions of the generalized equations mentioned above. Finally, some new approaches for finding the output probability density function of an RC filter-limiter-RC filter system driven by white Gaussian noise are included. The results in this case exhibit the data required for complete solution and clearly illustrate some of the mathematical difficulties inherent to the use of the generalized equations.
Resumo:
The author summarises observations on the behaviour of Polyphemus pediculus and functions of its extremities in the process of feeding. The crustacean Polyphemus pediculus seizes its prey, kills it and pulverises its food with the help of its extremities. Therefore for a study of its feeding method was necessary not only to have been acquainted in detail with the structure of its extremities, but also to have observed their interaction for the accomplishment of the stated functions.
Resumo:
Intrinsically fuzzy morphological erosion and dilation are extended to a total of eight operations that have been formulated in terms of a single morphological operation--biased dilation. Based on the spatial coding of a fuzzy variable, a bidirectional projection concept is proposed. Thus, fuzzy logic operations, arithmetic operations, gray-scale dilation, and erosion for the extended intrinsically fuzzy morphological operations can be included in a unified algorithm with only biased dilation and fuzzy logic operations. To execute this image algebra approach we present a cellular two-layer processing architecture that consists of a biased dilation processor and a fuzzy logic processor. (C) 1996 Optical Society of America
Resumo:
Fuzzy-reasoning theory is widely used in industrial control. Mathematical morphology is a powerful tool to perform image processing. We apply fuzzy-reasoning theory to morphology and suggest a scheme of fuzzy-reasoning morphology, including fuzzy-reasoning dilation and erosion functions. These functions retain more fine details than the corresponding conventional morphological operators with the same structuring element. An optical implementation has been developed with area-coding and thresholding methods. (C) 1997 Optical Society of America.
Resumo:
A more powerful tool for binary image processing, i.e., logic-operated mathematical morphology (LOMM), is proposed. With LOMM the image and the structuring element (SE) are treated as binary logical variables, and the MULTIPLY between the image and the SE in correlation is replaced with 16 logical operations. A total of 12 LOMM operations are obtained. The optical implementation of LOMM is described. The application of LOMM and its experimental results are also presented. (C) 1999 Optical Society of America.
Resumo:
An optoelectronic implementation based on optical neighborhood operations and electronic nonlinear feedback is proposed to perform morphological image processing such as erosion, dilation, opening, closing and edge detection. Results of a numerical simulation are given and experimentally verified.
Resumo:
Several patients of P. J. Vogel who had undergone cerebral commissurotomy for the control of intractable epilepsy were tested on a variety of tasks to measure aspects of cerebral organization concerned with lateralization in hemispheric function. From tests involving identification of shapes it was inferred that in the absence of the neocortical commissures, the left hemisphere still has access to certain types of information from the ipsilateral field. The major hemisphere can still make crude differentiations between various left-field stimuli, but is unable to specify exact stimulus properties. Most of the time the major hemisphere, having access to some ipsilateral stimuli, dominated the minor hemisphere in control of the body.
Competition for control of the body between the hemispheres is seen most clearly in tests of minor hemisphere language competency, in which it was determined that though the minor hemisphere does possess some minimal ability to express language, the major hemisphere prevented its expression much of the time. The right hemisphere was superior to the left in tests of perceptual visualization, and the two hemispheres appeared to use different strategies in attempting to solve the problems, namely, analysis for the left hemisphere and synthesis for the right hemisphere.
Analysis of the patients' verbal and performance I.Q.'s, as well as observations made throughout testing, suggest that the corpus callosum plays a critical role in activities that involve functions in which the minor hemisphere normally excels, that the motor expression of these functions may normally come through the major hemisphere by way of the corpus callosum.
Lateral specialization is thought to be an evolutionary adaptation which overcame problems of a functional antagonism between the abilities normally associated with the two hemispheres. The tests of perception suggested that this function lateralized into the mute hemisphere because of an active counteraction by language. This latter idea was confirmed by the finding that left-handers, in whom there is likely to be bilateral language centers, are greatly deficient on tests of perception.
Resumo:
The Fokker-Planck (FP) equation is used to develop a general method for finding the spectral density for a class of randomly excited first order systems. This class consists of systems satisfying stochastic differential equations of form ẋ + f(x) = m/Ʃ/j = 1 hj(x)nj(t) where f and the hj are piecewise linear functions (not necessarily continuous), and the nj are stationary Gaussian white noise. For such systems, it is shown how the Laplace-transformed FP equation can be solved for the transformed transition probability density. By manipulation of the FP equation and its adjoint, a formula is derived for the transformed autocorrelation function in terms of the transformed transition density. From this, the spectral density is readily obtained. The method generalizes that of Caughey and Dienes, J. Appl. Phys., 32.11.
This method is applied to 4 subclasses: (1) m = 1, h1 = const. (forcing function excitation); (2) m = 1, h1 = f (parametric excitation); (3) m = 2, h1 = const., h2 = f, n1 and n2 correlated; (4) the same, uncorrelated. Many special cases, especially in subclass (1), are worked through to obtain explicit formulas for the spectral density, most of which have not been obtained before. Some results are graphed.
Dealing with parametrically excited first order systems leads to two complications. There is some controversy concerning the form of the FP equation involved (see Gray and Caughey, J. Math. Phys., 44.3); and the conditions which apply at irregular points, where the second order coefficient of the FP equation vanishes, are not obvious but require use of the mathematical theory of diffusion processes developed by Feller and others. These points are discussed in the first chapter, relevant results from various sources being summarized and applied. Also discussed is the steady-state density (the limit of the transition density as t → ∞).
Resumo:
A locally integrable function is said to be of vanishing mean oscillation (VMO) if its mean oscillation over cubes in Rd converges to zero with the volume of the cubes. We establish necessary and sufficient conditions for a locally integrable function defined on a bounded measurable set of positive measure to be the restriction to that set of a VMO function.
We consider the similar extension problem pertaining to BMO(ρ) functions; that is, those VMO functions whose mean oscillation over any cube is O(ρ(l(Q))) where l(Q) is the length of Q and ρ is a positive, non-decreasing function with ρ(0+) = 0.
We apply these results to obtain sufficient conditions for a Blaschke sequence to be the zeros of an analytic BMO(ρ) function on the unit disc.
Resumo:
Let E be a compact subset of the n-dimensional unit cube, 1n, and let C be a collection of convex bodies, all of positive n-dimensional Lebesgue measure, such that C contains bodies with arbitrarily small measure. The dimension of E with respect to the covering class C is defined to be the number
dC(E) = sup(β:Hβ, C(E) > 0),
where Hβ, C is the outer measure
inf(Ʃm(Ci)β:UCi Ↄ E, Ci ϵ C) .
Only the one and two-dimensional cases are studied. Moreover, the covering classes considered are those consisting of intervals and rectangles, parallel to the coordinate axes, and those closed under translations. A covering class is identified with a set of points in the left-open portion, 1’n, of 1n, whose closure intersects 1n - 1’n. For n = 2, the outer measure Hβ, C is adopted in place of the usual:
Inf(Ʃ(diam. (Ci))β: UCi Ↄ E, Ci ϵ C),
for the purpose of studying the influence of the shape of the covering sets on the dimension dC(E).
If E is a closed set in 11, let M(E) be the class of all non-decreasing functions μ(x), supported on E with μ(x) = 0, x ≤ 0 and μ(x) = 1, x ≥ 1. Define for each μ ϵ M(E),
dC(μ) = lim/c → inf/0 log ∆μ(c)/log c , (c ϵ C)
where ∆μ(c) = v/x (μ(x+c) – μ(x)). It is shown that
dC(E) = sup (dC(μ):μ ϵ M(E)).
This notion of dimension is extended to a certain class Ӻ of sub-additive functions, and the problem of studying the behavior of dC(E) as a function of the covering class C is reduced to the study of dC(f) where f ϵ Ӻ. Specifically, the set of points in 11,
(*) {dB(F), dC(f)): f ϵ Ӻ}
is characterized by a comparison of the relative positions of the points of B and C. A region of the form (*) is always closed and doubly-starred with respect to the points (0, 0) and (1, 1). Conversely, given any closed region in 12, doubly-starred with respect to (0, 0) and (1, 1), there are covering classes B and C such that (*) is exactly that region. All of the results are shown to apply to the dimension of closed sets E. Similar results can be obtained when a finite number of covering classes are considered.
In two dimensions, the notion of dimension is extended to the class M, of functions f(x, y), non-decreasing in x and y, supported on 12 with f(x, y) = 0 for x · y = 0 and f(1, 1) = 1, by the formula
dC(f) = lim/s · t → inf/0 log ∆f(s, t)/log s · t , (s, t) ϵ C
where
∆f(s, t) = V/x, y (f(x+s, y+t) – f(x+s, y) – f(x, y+t) + f(x, t)).
A characterization of the equivalence dC1(f) = dC2(f) for all f ϵ M, is given by comparison of the gaps in the sets of products s · t and quotients s/t, (s, t) ϵ Ci (I = 1, 2).