928 resultados para lead-time structure
Resumo:
We discuss the nature of visible photoluminescence at room temperature in amorphous lead titanate in the light of the results of recent experimental and theoretical calculations. Experimental results obtained by XANES and EXAFS revealed that amorphous lead titanate is composed of a Ti-O network having fivefold Ti coordination and NBO-type (non-bridging oxygen) defects. These defects can modify the electronic structure of amorphous compounds. Our calculation of the electronic structure involved the use of first-principle molecular calculations to simulate the variation of the electronic structure in the lead titanate crystalline phase, which is known to have a direct band gap, and we also made an in-depth examination of amorphous lead titanate. The results of our theoretical calculations of amorphous lead titanate indicate that the formation of fivefold coordination in the amorphous system may introduce delocalized electronic levels in the HOMO ( highest occupied molecular orbital) and the LUMO ( lowest unoccupied molecular orbital). A comparison of the experimental and theoretical results of amorphous compounds suggests the possibility of a radiative recombination (electron-hole pairs), which may be responsible for the emission of photoluminescence. (C) 2003 Kluwer Academic Publishers.
Resumo:
The mechanical activation is one of the most effective method for obtaining highly disperse system due to mechanical action stress fields form in solids during milling procedure. This effect results in changes of free energy, leading to release of heat, formation of a new surface, formation of different crystal lattice defects and initiation of solid-state chemical reaction. The accumulated deformation energy determines irreversible changes of crystal structure and consequently microstructure resulting in the change of their properties. Mechanochemical processing route has been developed recently for the production of intermetallic and alloy compounds. The intrinsic advantage of this process is that the solid-state reaction is activated due to mechanical energy instead of the temperature. It was shown that the chemical reactivity of starting materials could be improved significantly after mechanochemical activation and, subsequently, the calcination temperature was reduced. Besides, it was apparent that the mechanochemical treatment could enhance the reactivity of constituent oxides; however, the sintering process could not be avoided to develop the desired ceramics. A novel mechanochemical technique for synthesis of fine-grained perovskite structured powders has shown that it is possible to form perovskite at room temperature. The effect of milling on the formation of perovskite structure of barium titanate (BT), lead titanate (PT), PZT, PZN, magnesium niobate (PMN) and LM ceramic materials was analyzed. The dielectric properties of sintered ceramics are comparable with those prepared by other methods in the literature. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Pb0.91Ca0.1TiO3 powders (PCT) were prepared by mechanochemical synthesis from high-energy ball milling process. The influence of milling time on the phase formation, crystal structure, specific surface area, density and powder morphology was observed. We adopted the Rietveld refinement technique to investigate the crystal structure of the PCT powders. Scanning electron microscopy (SEM) analysis revealed that PCT powders milled for 5 h showed a wide distribution of particle agglomerates while milled for 35 h showed a decrease in agglomerates size. Further prolongation of milling time resulted in the agglomerates growth. (C) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Ferroelectric Pb1-xCaxTiO3 (x = 0.24) thin films were formed on a Pt/Ti/SiO2/Si substrate by the polymeric precursor method using the dip-coating technique for their deposition. Characterization of the films bq X-ray diffraction showed a perovskite single phase with a tetragonal structure after annealing at 700 degreesC. Atomic force microscopy (AFM) analyses showed that the film had a smooth and crack-free surface with low surface roughness. In addition, the PCT thin film had a granular structure with an 80 nm grain size. The thickness of the films observed by the scanning electron microscopy (SEM) is 550 nm and there is a good adhesion between the film and substrate. For the electrical measurements metal-ferroelectric-metal of the type capacitors were obtained, where the thin films showed good dielectric and ferroelectric properties. The dielectric constant and dissipation factor at 1 kHz and measured at room temperature were found to be 457 and 0.03. respectively. The remanent polarization and coercive field for the: deposited films were P-r = 17 muC/cm(2) and E-c = 75 kV/cm, respectively. Moreover. The 550-nm-thick film showed a current density in the order of 10(-8) A/cm(2) at the applied voltage of 2 V. The high values of the thin film's dielectric properties are attributed to its excellent microstructural quality and the chemical homogeneity obtained by the polymeric precursor method. (C) 2001 Elsevier science Ltd. All rights reserved.
Resumo:
The crystallization process of lead titanate (PT) prepared using the polymeric precursor method was investigated using X-ray diffractometry, Raman spectroscopy, electron microscopy, and X-ray absorption spectroscopy techniques. The results showed that amorphous PT was formed by an O-Ti-O structure composed of fivefold and sixfold oxygen-coordinated titanium. The local structure of the amorphous PT phase was similar to that of the cubic PT phase, i.e., similar coordination number and similar bond lengths, leading to a topotactic-like transformation during the phase transformation from amorphous to cubic perovskite PT. Because of the low crystallization temperature, every transformation observed during the crystallization process was associated with a short-range rearrangement process.
Resumo:
A new, versatile, and simple method for quantitative analysis of zinc, copper, lead, and cadmium in fuel ethanol by anodic stripping voltammetry is described. These metals can be quantified by direct dissolution of fuel ethanol in water and subsequent voltammetric measurement after the accumulation step. A maximum limit of 20% (v/v) ethanol in water solution was obtained for voltammetric measurements without loss of sensitivity for metal species. Chemical and operational optimum conditions were analyzed in this study; the values obtained were pH 2.9, a 4.7-mum thickness mercury film, a 1,000-rpm rotation frequency of the working electrode, and a 600-s pre-concentration time. Voltammetric measurements were obtained using linear scan (LSV), differential pulse (DPV), and square wave (SWV) modes and detection limits were in the range 10(-9)-10(-8) mol L-1 for these metal species. The proposed method was compared with a traditional analytical technique, flame atomic absorption spectrometry (FAAS), for quantification of these metal species in commercial fuel ethanol samples.
Resumo:
Hybrid siloxane-polymethylmethacrylate (PMMA) nanocomposites with covalent bonds between the inorganic (siloxane) and organic (polymer) phases were prepared by the sot gel process through hydrolysis and polycondensation of 3-(trimethoxysilyl)propylmethacrylate (TMSM) and polymerization of methylmethacrylate (MMA) using benzoyl peroxide (BPO) as initiator. The effect of MMA, BPO and water contents on the viscoelastic behaviour of these materials was analysed during gelation by dynamic rheological measurements. The changes in storage (G') and loss moduli (G), complex viscosity (eta*) and phase angle (6) were measured as a function of the reaction time showing the viscous character of the sot in the initial step of gelation and its progressive transformation to an elastic gel. This study was complemented by Si-29 and C-13 solid-state nuclear magnetic resonance (NMR/MAS) measurements of dried gel. The analysis of the experimental results shows that linear chains are formed in the initial step of the gelation followed by a growth of branched structures and formation of a three-dimensional network. Near the gel point this hybrid material demonstrates the typical scaling behaviour expected from percolation theory.
Resumo:
The objective of the paper is to report research carried out over two years aiming at developing a framework to support the management of manufacturing organizations for whom reducing throughput time is strategically important, either because they compete based on short lead times or because they choose to pursue other objectives such as cost reduction by means of reducing their manufacturing cycle times. A step-by-step method is proposed based on the analyses of a number of Brazilian best practice cases (all manufacturing companies and all part of large multi-national corporations) and on the relevant literature.
Resumo:
Glasses and glass-ceramics have been obtained in oxyfluoride systems involving lead and cadmium fluorides and one of the well-known glass former oxides SiO2, B2O3 and TeO2. Vitreous domains were established and a wide range of compositions including high heavy metal contents lead to stable glasses. Amorphous structures have been studied by short-range order spectroscopy techniques (Raman scattering and x-ray absorption) and molecular basic structures have been identified. Besides the usual oxides, the role of glass former could also be proposed for cadmium ions. Special attention has been paid for crystallization process. Cubic lead fluoride, cubic lead tellurite, tetragonal tellurium oxide and a solid solution of the type Pb1-xCdxF2 are obtained as crystallization products depending on the composition and temperature of heat treatments. Pb1-xCdxF2 solid solutions are well known superionic materials and obtaining this solid solution as a crystal phase could be very interesting for applications concerning ionic electrical conduction properties. The addition of rare earth ions led to the control of the crystallization process. In the presence of the nucleating ion only the cubic form beta-PbF2 was identified. Rare earth ions are present in the crystal phase and crystal-like spectroscopic properties were observed suggesting interesting applications for these perfectly transparent glass ceramics in photonics.
Resumo:
The nonlinear (NL) response of lead-germanium oxide amorphous films was investigated using a Ti:saphire laser delivering pulses of approximate to 150 fs at 800 nm. The Kerr shutter technique was employed to reveal the time response of the nonlinearity that is smaller than 150 fs. The sign and magnitude of the nonlinearity were obtained using a novel technique called thermally managed eclipse Z scan which allows the simultaneous characterization of cumulative and noncumulative NL effects. The NL refractive index of electronic origin, n(2)approximate to 2x10(-17) m(2)/W, and the NL absorption coefficient, alpha(2)approximate to 3x10(3) cm/GW, were determined. (c) 2007 American Institute of Physics.
Resumo:
CaBi4Ti4O15 (CBTi144) thin films were evaluated for use as lead-free thin-film piezoelectrics in microelectromechanical systems. The films were grown by the polymeric precursor method on (100)Pt/Ti/SiO2/Si substrates. The a/b-axis orientation of the ferroelectric film is considered to be associated with the preferred orientation of the Pt bottom electrode. The P-r and E-c were 14 mu C/cm(2) and 64 kV/cm, respectively, for a maximum applied field of 400 kV/cm. The domain structure was investigated by piezoresponse force microscopy. The film has a piezoelectric coefficient, d(33), equal to 60 pm/V and a current density of 0.7 mA/cm(2).
Resumo:
BaTiO3 is usually doped to achieve the temperature stability required by device applications, as well as to obtain a large positive temperature coefficient anomaly of resistivity (PTCR). Uniform distribution of dopants among the submicron dielectric particles is the key for optimal control of grain size and microstructure to maintain a high reliability. The system Ba0.84Pb0.16TiO3 was synthesized from high purity BaCO3, TiO2, PbO oxide powders as raw materials. Sb2O3, MnSO4 and ZnO were used as dopants and Al2O3, TiO2 and SiO2 as grain growth controllers. Phase composition was analyzed by using XRD and the microstructure was investigated by SEM. EDS attached to SEM was used to analyze phase composition specially related to abnormal grain growth. Electrical resistivities were measured as a function of temperature and the PTCR effect characterized by an abrupt increase on resistivity.
Resumo:
Lead toxicity was studied in rats exposed from conception until weaning and assessed by monitoring offspring behavior in both the open field and elevated plus maze and by determining tissue lead in an assessment schedule extended to first (F1) and second (F2) generations. Dams utilized for the F1 generation were submitted to 750 ppm of lead (acetate) in drinking water during pregnancy and lactation. For F1 pups, behavioral alterations were not detected in the elevated plus maze, while in the open field, spontaneous locomotor activity as well as time of both grooming and rearing increased, while freezing time decreased in 30- and 90-day-old rats. Lead content was higher in tissues of 1- and 30-day-old pups. However, in 90-day-old rats, lead was detected only in the femur. F2 generation was lead-free but still presented alterations in both locomotor activity and grooming in 30- and 90-day-old pups. It appears that developmental lead exposure may cause behavioral effects during the developmental stage of the F1 generation, which remains throughout the animal's adult life as a sequel, regardless of lead accumulation, and is extended to the F2 generation of rats. (C) 2001 Elsevier B.V. All rights reserved.
Resumo:
Diabetes mellitus can lead to reproductive disorders that in turn result in weakened fertility brought about by morphofunctional changes in the testes and accessory sex glands. However, doubts persist concerning the basic biology of the secretory epithelial cells and the stroma of the coagulating gland of diabetic mice. Thus, the objective of the present study was to analyze the histological and ultrastructural changes associated with stereology of the coagulating gland of mice with alloxan-induced diabetes, and of spontaneously diabetic mice. Sixteen mice of the C57BL/6J strain, and eight non-obese diabetic (NOD) mice were used. The animals were divided into three groups: 1) control (C), 2) alloxan diabetic (AD), and 3) NOD. Thirty days after the detection of diabetic status in group 2, all of the animals were killed and then perfused with Karnovsky's solution through the left cardiac ventricle. The coagulating gland was then removed and processed for morphometric study by light microscopy and electron microscopy. The results showed thickening of the stroma, atrophy of secretory epithelial cells, and disorganization of the organelles involved in the secretory process in both NOD and alloxan-induced mice. Thus, it may be concluded that the coagulating gland suffered drastic morphological changes, and consequently impaired glandular function, in the presence of diabetes mellitus type I in both NOD and AD mice. (C) 2003 Wiley-Liss, Inc.
Resumo:
The effect of lead excess on the pyrochlore-type formation in Pb(Mg1/3Nb2/3)O-3 (PMN) powders has been investigated. The polymeric precursor method was used in the synthesis of the columbite in association to the partial oxalate method to synthesize the PMN powder samples. Structure refinement of the columbite precursor and PMN powders was carried out using the Rietveld method. The quantitative phase analysis showed that the amount of perovskite phase is not affected by PbO excess, but a great excess drives the pyrochlore-type formation so that 3 wt.% of PbO causes the predominance of Mg-containing pyrochlore phase. Using the refined data obtained from the Rietveld refinement, the compositional fluctuation in the perovskite phase was calculated from Nb/Mg ratio values and Pb occupation factor. Mg inclusion occurs concomitant with Ph one into PMN perovskite phase and this effect is directed by PbO excess during powder synthesis. (C) 2003 Elsevier B.V. All rights reserved.