999 resultados para inclusive reactions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yttrium triflate or triflic acid catalysed Povarov reaction of methyl anthranilate with ethyl vinyl ether, both as aldehyde surrogate and as alkene, gave the desired 2-methyl-4-ethoxytetrahydroquinoline diastereoisomers as the major products along with four component coupling von Miller adducts. A proton NMR-study, using yttrium triflate as catalyst, revealed that the cis-diastereoisomers were the initial major products in both the Povarov and von Miller reactions but that these isomerised to the trans-diastereoisomers under the reaction conditions. Two distinct pathways for forming von Miller adducts were uncovered with the initial Povarov products being converted to von Miller adducts under the reaction conditions. Replacement of the 4-ethoxy with a 4-methoxy group under acidic conditions gave predominantly the trans-diastereoisomer, which was subsequently converted to a cis/trans mixture of the tetrahydroquinoline antibiotic helquinoline. It was also possible to convert the von Miller products to Povarov products under acidic conditions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using toluene dioxygenase as biocatalyst, enantiopure cisdihydrodiol and cis-tetrahydrodiol metabolites, isolated as their ketone tautomers, were obtained from meta and ortho methoxyphenols. Although these isomeric phenol substrates are structurally similar, the major bioproducts from each of these biotransformations were found at different oxidation levels. The relatively stable cyclohexenone cis-diol metabolite from meta methoxyphenol was isolated, while the corresponding metabolite from ortho methoxyphenol was rapidly bioreduced to a cyclohexanone cis-diol. The chemistry of the 3-methoxycyclohexenone cis-diol product was investigated and elimination, aromatization, hydrogenation, regioselective O-exchange, Stork−Danheiser transposition and O-methylation reactions were observed. An offshoot of this technology provided a two-step chemoenzymatic synthesis, from meta methoxyphenol, of a recently reported chiral fungal metabolite; this synthesis also established the previously unassigned absolute configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallo-azomethine ylides, generated from imines by the action of amine bases in combination with LiBr or AgOAc, undergo cycloaddition with both 1R, 2S, 5R- and 1S, 2R, 5S-menthyl acrylate at room temperature to give homochiral pyrrolidines in excellent yield. The stronger the base the faster the cycloaddition and the greater the yield with: 2-t-butyl-1,1,3,3-tetramethylguanidine > DBU > NEt(3) X-Ray crystal structures of representative cycloadducts establish that the absolute configuration of the newly established pyrrolidine stereocentres is independent of the metal salt and the size of the pyrrolidineC(2)-substituent for a series of aryl and aliphatic imines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A catalyst system comprising 10 mol % (Pd(OAc) and 20 mol % PPh3 effects the cyclisation of aryl halides onto proximate alkenes via 5-, 6-, and 7-exo-trig, and 7-endo-trig processes giving a variety of bridged-ring carbo- and hetero-cycles in excellent yield. Double bond isomerisation in the product is rarely encountered and may be suppressed by the addition of Tl(1) salts. One example of diastereospecific bis-cyclisation is given and the crystal structure of 1-aza-2-sulphonyl-3,4-benzobicyclo[3.2.1]nona-6-ene is reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel nucleoside analogues containing photoswitchable moieties were prepared using 'click' cycloaddition reactions between 5 '-azido-5 '-deoxythymidine and mono- or bis-N-propargylamide-substituted azobenzenes. In solution, high to quantitative yields were achieved using 5mol% Cu(I) in the presence of a stabilizing ligand. 'Click' reactions using the monopropargylamides were also effected in the absence of added cuprous salts by the application of liquid assisted grinding (LAG) in metallic copper reaction vials. Specifically, high speed vibration ball milling (HSVBM) using a 3/32('') (2.38mm) diameter copper ball (62mg) at 60Hz overnight in the presence of ethyl acetate lead to complete consumption of the 5 '-azido nucleoside with clean conversion to the corresponding 1,3-triazole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activation of oxygen molecules is an important issue in the gold-catalyzed partial oxidation of alcohols in aqueous solution. The complexity of the solution arising from a large number of solvent molecules makes it difficult to study the reaction in the system. In this work, O-2 activation on an Au catalyst is investigated using an effective approach to estimate the reaction barriers in the presence of solvent. Our calculations show that O-2 can be activated, undergoing OOH* in the presence of water molecules. The OOH* can readily be formed on Au(211) via four possible pathways with almost equivalent free energy barriers at the aqueous-solid interface: the direct or indirect activation of O-2 by surface hydrogen or the hydrolysis of O-2 following a Langmuir-Hinshelwood mechanism or an Eley-Rideal mechanism. Among them, the Eley-Rideal mechanism may be slightly more favorable due to the restriction of the low coverage of surface H on Au(211) in the other mechanisms. The results shed light on the importance of water molecules on the activation of oxygen in gold-catalyzed systems. Solvent is found to facilitate the oxygen activation process mainly by offering extra electrons and stabilizing the transition states. A correlation between the energy barrier and the negative charge of the reaction center is found. The activation barrier is substantially reduced by the aqueous environment, in which the first solvation shell plays the most important role in the barrier reduction. Our approach may be useful for estimating the reaction barriers in aqueous systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The August 2011 riots in England occasioned widespread condemnation from government and the media. Here, we apply the concepts of hypocrisy and affiliation to explore reactions to these riots. Initially acknowledging that politics necessitates a degree of hypocrisy, we note that some forms of hypocrisy are indefensible: they compromise injavascript:void(0);tegrity. With rioters condemned as thugs and members of a feral underclass, some reactions exemplified forms of corrosive hypocrisy that deflected attention away from economic, social and cultural problems. Moreover, such reactions omitted to attend to the concept of [dis]affiliation amongst young rioters. Accordingly, we look to the role that education might play in re-affiliating those who do not feel they belong to, or have a sufficient stake in, society. Whilst our focus is on the riots in England, the exploration of hypocrisy and affiliation, and discussion of education for re-affiliation, transcends that national context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal reactions proceed optimally when they are rapidly heated to the highest tolerable temperature, held there for the shortest possible time and then quenched. This is explained through assessments of reaction kinetics in literature examples and models. Although presently available microwave equipment is better suited to rapid heating than resistance-heated systems, the findings do not depend upon the method of heating. Claims that microwave heated reactions proceed faster and more cleanly than their conventionally heated counterparts are valid only when comparably rapid heating and cooling cannot be obtained by conventional heating. These findings suggest that rigid adherence to the sixth principle of green chemistry, relating to the use of ambient temperature and pressure, may not always afford optimal results. © 2010 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This manuscript describes the application and further development of the TAP technique in kinetic characterization of heterogeneous catalysis. The major application of TAP systems is to study mechanisms, kinetics and transport phenomena in heterogeneous catalysis, all of which is made possible by the sub-millisecond time resolution. Furthermore, the kinetic information obtained can be used to gain an insight into the mechanism occurring over the catalyst system. This is advantageous as heterogeneous catalysts with an improved efficiency can be developed as a result. TAP kinetic studies are carried out at low pressure (~1x10-7 mbar) and TAP pulses are sufficiently small (1013-1015 molecules) so as to maintain this low pressure. The use of a small number of molecules in comparison to the total number of active sites means the state of the catalyst remains relatively unchanged. The use of the low intensity pulses also makes the pressure gradient negligible and so allows the TAP reactor system to operate in the Knudsen Diffusion regime, where gas-gas reactions are eliminated. Hence only gas-catalyst reactions are investigated and, by the use of moment analysis of observed exit flow, rate constants of elementary steps of the reaction can be obtained.

In this manuscript, two attempts to further the TAP technique are reported. Firstly, the work undertaken at QUB to attempt to control the number of molecules of condensable reagents that can be pulsed during a TAP pulse experiment is disclosed. Secondly, a collaborative project with SAI Ltd Manchester is discussed in a separate chapter, where technical details and validation of a customised time of flight mass spectrometer (ToF MS) for the QUB TAP-1 system are reported. A collaborative project with Cardiff Catalysis Institute focusing on the study of CO oxidation over hopcalite catalysts is also reported. The analysis of the experimental results has provided an insight into the possible mechanism of the oxidation of CO over these catalysts. A correction function has also been derived which accounts for the adsorption of reactant molecules over inert materials that are used for the reactor packing in TAP experiments. This function was then applied to the selective reduction of O2 in a H2 rich ethene feed, so that more accurate TAP moment based analysis could be conducted.