985 resultados para human enhancement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time in 400 years a number of leading common law nations have, fairly simultaneously, embarked on charity law reform leading to an encoding of key definitional matters in charity legislation. This book provides an analysis of international case law developments on the ever growing range of issues now being generated by clashes between human rights, religion and charity law. Kerry O'Halloran identifies and assesses the agenda of 'moral imperatives', such as abortion and gay marriage that delineate the legal interface and considers their significance for those with and those without religious belief. By assessing jurisdictional differences in the law relating to religion/human rights/charity the author provides a picture of the evolving 'culture wars' that now typify and differentiates societies in western nations including the USA, England and Wales, Ireland, Australia, Canada and New Zealand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron field emission (EFE) characteristics from vertically aligned carbon nanotubes (VACNTs) without and with treatment by the nitrogen plasma are investigated. The VACNTs with the plasma treatment showed a significant improvement in the EFE property compared to the untreated VACNTs. The morphological, structural, and compositional properties of the VACNTs are extensively examined by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive X-ray spectroscopy. It is shown that the significant EFE improvement of the VACNTs after the nitrogen plasma treatment is closely related to the variation of the morphological and structural properties of the VACNTs. The high current density (299.6 μA/cm2) achieved at a low applied field (3.50 V/μm) suggests that the VACNTs after nitrogen plasma treatment can serve as effective electron field emission sources for numerous applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early full-term pregnancy is one of the most effective natural protections against breast cancer. To investigate this effect, we have characterized the global gene expression and epigenetic profiles of multiple cell types from normal breast tissue of nulliparous and parous women and carriers of BRCA1 or BRCA2 mutations. We found significant differences in CD44+ progenitor cells, where the levels of many stem cell-related genes and pathways, including the cell-cycle regulator p27, are lower in parous women without BRCA1/BRCA2 mutations. We also noted a significant reduction in the frequency of CD44+p27+ cells in parous women and showed, using explant cultures, that parity-related signaling pathways play a role in regulating the number of p27+ cells and their proliferation. Our results suggest that pathways controlling p27+ mammary epithelial cells and the numbers of these cells relate to breast cancer risk and can be explored for cancer risk assessment and prevention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel nanostructures such as vertically aligned carbon nanotube (CNT) arrays have received increasing interest as drug delivery carriers. In the present study, two CNT arrays with extreme surface wettabilities are fabricated and their effects on the release of recombinant human bone morphogenetic protein-2 (rhBMP-2) are investigated. It is found that the superhydrophilic arrays retained a larger amount of rhBMP-2 than the superhydrophobic ones. Further use of a poloxamer diffusion layer delayed the initial burst and resulted in a greater total amount of rhBMP-2 released from both surfaces. In addition, rhBMP-2 bound to the superhydrophilic CNT arrays remained bioactive while they denatured on the superhydrophobic surfaces. These results are related to the combined effects of rhBMP-2 molecules interacting with poloxamer and the surface, which could be essential in the development of advanced carriers with tailored surface functionalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aberrant DNA replication is a primary cause of mutations that are associated with pathological disorders including cancer. During DNA metabolism, the primary causes of replication fork stalling include secondary DNA structures, highly transcribed regions and damaged DNA. The restart of stalled replication forks is critical for the timely progression of the cell cycle and ultimately for the maintenance of genomic stability. Our previous work has implicated the single-stranded DNA binding protein, hSSB1/NABP2, in the repair of DNA double-strand breaks via homologous recombination. Here, we demonstrate that hSSB1 relocates to hydroxyurea (HU)-damaged replication forks where it is required for ATR and Chk1 activation and recruitment of Mre11 and Rad51. Consequently, hSSB1-depleted cells fail to repair and restart stalled replication forks. hSSB1 deficiency causes accumulation of DNA strand breaks and results in chromosome aberrations observed in mitosis, ultimately resulting in hSSB1 being required for survival to HU and camptothecin. Overall, our findings demonstrate the importance of hSSB1 in maintaining and repairing DNA replication forks and for overall genomic stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research in the rapidly emerging field of plasmonics has shown the potential to significantly enhance light trapping inside thin-film solar cells by using metallic nanoparticles. In this article it is demonstrated the plasmon enhancement of optical absorption in amorphous silicon solar cells by using silver nanoparticles. Based on the analysis of the higher-order surface plasmon modes, it is shown how spectral positions of the surface plasmons affect the plasmonic enhancement of thin-film solar cells. By using the predictive 3D modeling, we investigate the effect of the higher-order modes on that enhancement. Finally, we suggest how to maximize the light trapping and optical absorption in the thin-film cell by optimizing the nanoparticle array parameters, which in turn can be used to fine tune the corresponding surface plasmon modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strong electromagnetic field enhancement that occurs under conditions of the surface plasmon excitation in metallic nanoparticles deposited on a semiconductor surface is a very efficient and promising tool for increasing the optical absorption within semiconductor solar cells and, hence, their photocurrent response. The enhancement of the optical absorption in thin-film silicon solar cells via the excitation of localized surface plasmons in spherical silver nanoparticles is investigated. Using the effective medium model, the effect of the nanoparticle size and the surface coverage on that enhancement is analyzed. The optimum configuration and the nanoparticle parameters leading to the maximum enhancement in the optical absorption and the photocurrent response in a single p-n junction silicon cell are obtained. The effect of coupling between the silicon layer and the surface plasmon fields on the efficiency of the above enhancement is quantified as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose This study explores recent claims that humans exhibit a minimum cost of transport (CoTmin) for running which occurs at an intermediate speed, and assesses individual physiological, gait and training characteristics. Methods Twelve healthy participants with varying levels of fitness and running experience ran on a treadmill at six self-selected speeds in a discontinuous protocol over three sessions. Running speed (km[middle dot]hr-1), V[spacing dot above]O2 (mL[middle dot]kg-1[middle dot]km-1), CoT (kcal[middle dot]km-1), heart rate (beats[middle dot]min-1) and cadence (steps[middle dot]min-1) were continuously measured. V[spacing dot above]O2 max was measured on a fourth testing session. The occurrence of a CoTmin was investigated and its presence or absence examined with respect to fitness, gait and training characteristics. Results Five participants showed a clear CoTmin at an intermediate speed and a statistically significant (p < 0.05) quadratic CoT-speed function, while the other participants did not show such evidence. Participants were then categorized and compared with respect to the strength of evidence for a CoTmin (ClearCoTmin and NoCoTmin). The ClearCoTmin group displayed significantly higher correlation between speed and cadence; more endurance training and exercise sessions per week; than the NoCoTmin group; and a marginally non-significant but higher aerobic capacity. Some runners still showed a CoTmin at an intermediate speed even after subtraction of resting energy expenditure. Conclusion The findings confirm the existence of an optimal speed for human running, in some but not all participants. Those exhibiting a COTmin undertook a higher volume of running, ran with a cadence that was more consistently modulated with speed, and tended to be aerobically fitter. The ability to minimise the energetic cost of transport appears not to be ubiquitous feature of human running but may emerge in some individuals with extensive running experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines a buffer scheme to mitigate the negative impacts of power-conditioned loads on network voltage and transient stabilities. The scheme is based on the use of battery energy-storage systems in the buffers. The storage systems ensure that protected loads downstream of the buffers can ride through upstream voltage sags and swells. Also, by controlling the buffers to operate in either constant impedance or constant power modes, power is absorbed or injected by the storage systems. The scheme thereby regulates the rotor-angle deviations of generators and enhances network transient stability. A computational method is described in which the capacity of the storage systems is determined to achieve simultaneously the above dual objectives of load ride-through and stability enhancement. The efficacy of the resulting scheme is demonstrated through numerical examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term “Human error” can simply be defined as an error which made by a human. In fact, Human error is an explanation of malfunctions, unintended consequents from operating a system. There are many factors that cause a person to have an error due to the unwanted error of human. The aim of this paper is to investigate the relationship of human error as one of the factors to computer related abuses. The paper beings by computer-relating to human errors and followed by mechanism mitigate these errors through social and technical perspectives. We present the 25 techniques of computer crime prevention, as a heuristic device that assists. A last section discussing the ways of improving the adoption of security, and conclusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

miR-126 has been implicated in the processes of inflammation and angiogenesis. Through these processes, miR-126 is implicated in cancer biology, but its role there has not been well reviewed. The aim of this review is to examine the molecular mechanisms and clinicopathological significance of miR-126 in human cancers. miR-126 was shown to have roles in cancers of the gastrointestinal tract, genital tracts, breast, thyroid, lung and some other cancers. Its expression was suppressed in most of the cancers studied. The molecular mechanisms that are known to cause aberrant expression of miR-126 include alterations in gene sequence, epigenetic modification and alteration of dicer abundance. miR-126 can inhibit progression of some cancers via negative control of proliferation, migration, invasion, and cell survival. In some instances, however, miR-126 supports cancer progression via promotion of blood vessel formation. Downregulation of miR-126 induces cancer cell proliferation, migration, and invasion via targeting specific oncogenes. Also, reduced levels of miR-126 are a significant predictor of poor survival of patients in many cancers. In addition, miR-126 can alter a multitude of cellular mechanisms in cancer pathogenesis via suppressing gene translation of numerous validated targets such as PI3K, KRAS, EGFL7, CRK, ADAM9, HOXA9, IRS-1, SOX-2, SLC7A5 and VEGF. To conclude, miR-126 is commonly down-regulated in cancer, most likely due to its ability to inhibit cancer cell growth, adhesion, migration, and invasion through suppressing a range of important gene targets. Understanding these mechanisms by which miR-126 is involved with cancer pathogenesis will be useful in the development of therapeutic targets for the management of patients with cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BRAF represents one of the most frequently mutated protein kinase genes in human tumours. The mutation is commonly tested in pathology practice. BRAF mutation is seen in melanoma, papillary thyroid carcinoma (including papillary thyroid carcinoma arising from ovarian teratoma), ovarian serous tumours, colorectal carcinoma, gliomas, hepatobiliary carcinomas and hairy cell leukaemia. In these cancers, various genetic aberrations of the BRAF proto-oncogene, such as different point mutations and chromosomal rearrangements, have been reported. The most common mutation, BRAF V600E, can be detected by DNA sequencing and immunohistochemistry on formalin fixed, paraffin embedded tumour tissue. Detection of BRAF V600E mutation has the potential for clinical use as a diagnostic and prognostic marker. In addition, a great deal of research effort has been spent in strategies inhibiting its activity. Indeed, recent clinical trials involving BRAF selective inhibitors exhibited promising response rates in metastatic melanoma patients. Clinical trials are underway for other cancers. However, cutaneous side effects of treatment have been reported and therapeutic response to cancer is short-lived due to the emergence of several resistance mechanisms. In this review, we give an update on the clinical pathological relevance of BRAF mutation in cancer. It is hoped that the review will enhance the direction of future research and assist in more effective use of the knowledge of BRAF mutation in clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the clinicopathologic roles of mammalian target of rapamycin (mTOR) expression and its relationship to carcinogenesis and tumor progression in a colorectal adenoma-adenocarcinoma model. Two colon cancer cell lines with different pathologic stages (SW480 and SW48) and 1 normal colonic epithelial cell line (FHC) were used, in addition to 119 colorectal adenocarcinomas and 32 adenomas. mTOR expression profiles at messenger RNA (mRNA) and protein levels were investigated in the cells and tissues using real-time quantification polymerase chain reaction and immunohistochemistry. The findings were correlated with the clinicopathologic features of the tumors. The colon cell line from stage III cancer (SW48) showed higher expression of mTOR mRNA than that from stage II cancer (SW480). At the tissue level, mTOR showed higher mRNA and protein expression in colorectal carcinoma than in adenoma. The mRNA and protein expression was correlated with each other in approximately one-third of the carcinomas and adenomas. High levels of mTOR mRNA expression were noted more in carcinoma or adenoma arising from the distal portion of the large intestine (P = .025 and .019, respectively). Within the colorectal cancer population, a high level of expression of mTOR mRNA was related to the presence of lymph node metastases (P = .031), advanced pathologic stage (P = .05), and presence of persistent disease or tumor recurrence (P = .035). To conclude, the study has indicated that mTOR is likely to be involved in the development and progression of colorectal cancer and is linked to cancer initiation, invasiveness, and progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is important that industries’ water interactions respect the human right to water. Historically, within the mining industry there has been a disconnect between the management of sites’ internal water interactions and the consequences of their external impacts, including human rights impacts. This poses a challenge for the mining industry as it attempts to put the Ruggie Guiding Principles for Business and Human Rights into practice, particularly as United Nations has recently recognised the human right to water. A technical framework such as the Minerals Council of Australia’s Water Accounting Framework (WAF) can help to bridge this disconnect and to integrate human rights considerations into business practice by connecting a site’s external and internal water interactions and by encouraging regular monitoring of performance. However, at present the connection is limited since the WAF lacks the capability to formalise a site’s social water context. This work presents the Social Water Assessment Protocol (SWAP), a scoping tool consisting of a set of questions organised into taxonomic themes that capture a site’s social water context and that can be combined with the WAF to better connect human rights with mine water interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Telomerase is an extremely important enzyme required for the immortalisation of tumour cells. Because the gene is activated in the vast majority of tumour tissues and remains unused in most somatic cells, it represents a marker with huge diagnostic, prognostic and treatment implications in cancer. This article summarises the basic structure and functions of telomerase and considers its clinical implications in colorectal and other cancers.