966 resultados para hollow electron beam


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, In0.5Ga0.5As quantum dots are fabricated on GaAs (100) and (n11)A/B (n = 3, 5) substrates by molecular beam epitaxy. Atomic force microscopy shows that the quantum dots on each oriented substrate are different in size, shape and distribution. In addition, photoluminescence spectra from these quantum dots are different in emission peak position, line width and integrated intensity. Auger electron spectra demonstrate that In concentration is larger near the surface than inside quantum dots, suggesting the occurrence of surface segregation effect during the growth of InGaAs dots. The surface segregation effect is found to be related to substrate orientation. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fe-N films containing the Fe16N2 phase were prepared in a high-vacuum system of ion-beam-assisted deposition (IBAD). The composition and structure of the films were analysed by Auger electron spectroscopy (AES) and X-ray diffraction (XRD), respectively. Magnetic properties of the films were measured by a vibrating sample magnetometer (VSM). The phase composition of Fe-N films depend sensitively on the N/Fe atomic arrival ratio and the deposition temperature. An Fe16N2 film was deposited successfully on a GaAs (1 0 0) substrate by IBAD at a N/Fe atomic arrival ratio of 0.12. The gram-saturation magnetic moment of the Fe16N2 film obtained is 237 emu/g at room temperature, the possible cause has been analysed and discussed. Hysteresis loops of Fe16N2 have been measured, the coercive force H-c is about 120 Oe, which is much larger than the value for Fe, this means the Fe16N2 sample exhibits a large uniaxial magnetocrystalline anisotropy. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uranium ion beams were produced from electron cyclotron resonance (ECR) ion sources by sputtering method this year at the Institute of Modern Physics. At first, we chose the Lanzhou ECR No. 3 ion source to implement the production experiment of U ion beams. Finally, 11 e mu A of U28+, 5 e mu A of U32+, and 1.5 e mu A of U35+ were obtained. A U26+ ion beam produced by the LECR2 ion source was accelerated successfully by the cyclotron. This means that the Heavy Ion Research Facility in Lanzhou (HIRFL) has accomplished the acceleration of the ion beam of the heaviest element according to the designed parameters. The Lanzhou ECR ion source No. 2 (LECR2), which was built in 1997, has served the HIRFL for eight years and needed to be upgraded to provide more intense high charge state ion beams for HIRFL cooling storage ring. We started the upgrading project of LECR2 last year, and the modified design just has been finished. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superconducting electron cyclotron resonance (ECR) ion source with advanced design in Lanzhou (SECRAL) is a next generation ECR ion source and aims for developing a very compact superconducting ECR ion source with a structure and high performances for highly charged ion-beam production. The ion source was designed to be operated at 18 GHz at initial operation and finally will be extended to 28 GHz. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. At full excitation, this magnet assembly can produce peak mirror fields on the axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. What is different from the traditional design, such as LBNL VENUS and LNS SERSE, is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. SECRAL may open the way for building a compact and high-performance 18-28 GHz superconducting ECR ion source. Very preliminary commissioning results are promising. Detailed design, construction issues and very preliminary test results of the ion source at 18 GHz are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T he total secondary electron emission yields, gamma(T), induced by impact of the fast ions Neq+ (q = 2-8) and Arq+ (q = 3-12) on Si and Neq+ (q = 2-8) on W targets have been measured. It was observed that for a given impact energy, gamma(T) increases with the charge of projectile ion. By plotting gamma(T) as a function of the total potential energy of the respective ion, true kinetic and potential electron yields have been obtained. Potential electron yield was proportional to the total potential energy of the projectile ion. However, decrease in potential electron yield with increasing kinetic energy of Neq+ impact on Si and W was observed. This decrease in potential electron yield with kinetic energy of the ion was more pronounced for the projectile ions having higher charge states. Moreover, kinetic electron yield to energy-loss ratio for various ion-target combinations was calculated and results were in good agreement with semi-empirical model for kinetic electron emission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Employing the recoil ion momentum spectroscopy we investigate the collision between He2+ and argon atoms. By measuring the recoil longitudinal momentum the energy losses of projectile are deduced for capture reaction channels. It is found that in most cases for single- and double-electron capture, the inner electron in the target atom is removed, the recoil ion is in singly or multiply excited states (hollow ion is formed), which indicates that electron correlation plays an important role in the process. The captured electrons prefer the ground states of the projectile. It is experimentally demonstrated that the average energy losses are directly related to charge transfer and electronic configuration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally investigate the shell effect on the stabilization processes following the multi-electron transfer in slow collisions of Arq+-Ar (q = 6-9, It) The relative cross-section ratios of multi-electron transfer and of the subsequent stabilization with respect to single-electron capture are measured meanwhile compared with the theoretical results predicted by the classical over-barrier model. Our result indicates that the multi-electron transfer is dominant when the projectile charge is large and the subsequent stabilization shows a dramatic variation if the projectile L-shell configuration becomes open. It shows that the subsequent stabilization processes of multiply excited scattering ions have a strong dependence on the projectile shell. (C) 2010 Elsevier BV All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The differential and integral cross sections for electron impact excitation of lithium from the ground state 1s(2)2s to excited states 1s(2)2p, 1s(2)3l (l = s,p,d) and 1s(2)4l (l = s,p,d,f) at incident energies ranging from 5 eV to 25 eV are calculated by using a full relativistic distorted wave method. The target state wavefunctions are calculated by using the Grasp92 code. The continuum orbitals are computed in the distorted-wave approximation, in which the direct and exchange potentials among all the electrons are included. A part of the cross sections are compared with the available experimental data and with the previous theoretical values. It is found that, for the integral cross sections, the present calculations are in good agreement with the time-independent distorted wave method calculation, for differential cross sections, our results agree with the experimental data very well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superconducting electron cyclotron resonance ion source with advance design in Lanzhou (SECRAL) is an 18-28 GHz fully superconducting electron cyclotron resonance (ECR) ion source dedicated for highly charged heavy ion beam production. SECRAL, with an innovative superconducting magnet structure of solenoid-inside-sextupole and at lower frequency and lower rf power operation, may open a new way for developing compact and reliable high performance superconducting ECR ion source. One of the recent highlights achieved at SECRAL is that some new record beam currents for very high charge states were produced by 18 GHz or 18+14.5 GHz double frequency heating, such as 1 e mu A of Xe-129(43+), 22 e mu A of Bi-209(41+), and 1.5 e mu A of Bi-209(50+). To further enhance the performance of SECRAL, a 24 GHz/7 kW gyrotron microwave generator was installed and SECRAL was tested at 24 GHz. Some promising and exciting results at 24 GHz with new record highly charged ion beam intensities were produced, such as 455 e mu A of Xe-129(27+) and 152 e mu A of Xe-129(30+), although the commissioning time was limited within 3-4 weeks and rf power only 3-4 kW. Bremsstrahlung measurements at 24 GHz show that x-ray is much stronger with higher rf frequency, higher rf power. and higher minimum mirror magnetic field (minimum B). Preliminary emittance measurements indicate that SECRAL emittance at 24 GHz is slightly higher that at 18 GHz. SECRAL has been put into routine operation at 18 GHz for heavy ion research facility in Lanzhou (HIRFL) accelerator complex since May 2007. The total operation beam time from SECRAL for HIRFL accelerator has been more than 2000 h, and Xe-129(27+), Kr-78(19+), Bi-209(31+), and Ni-58(19+) beams were delivered. All of these new developments, the latest results, and long-term operation for the accelerator have again demonstrated that SECRAL is one of the best in the performance of ECR ion source for highly charged heavy ion beam production. Finally the future development of SECRAL will be presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

8YSZ fibers were synthesized by calcination of PVP/zirconium oxychloride/yttrium nitrate composite fibers (PVP-Precursor) obtained by electrospinning. Scanning electron microscopy (SEM) indicated that the 8YSZ fibers are hollow and the gas released during organic binder decomposition resulted in the formation of hollow center in fibers

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, rapid and controllable confinement of one-dimensional (1D) hollow PtCo nanomaterials on an indium tin oxide (ITO) electrode surface was simply realized via magnetic attraction. The successful assembly was verified by scanning electron microscopy (SEM) and cyclic voltammetry, which showed that a longer exposure time of the electrode to the suspension of these 1D hollow nanomaterials (magnetic suspension) led to a larger amount of attached 1D hollow PtCo nanomaterials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Opened hollow microspheres of organoclays were prepared via spray drying the suspension of modified Na+-montmorillonite (Na+-MMT) with alkylsulfonate. The microstructure and thermal properties of these opened hollow spheres were characterized by means of wide-angle X-ray diffraction, field emission scanning electron microscopy, and thermogravimetric analysis. The results showed that the organoclays had larger interlayer spacing compared with pure Na+-MMT and higher thermal stability relative to the alkylsufonate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strings of interconnected hollow carbon nanoparticles with porous shells were prepared by simple heat-treatments of a mixture of resorcinol-formaldehyde gel and transition-metal salts. The sample was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and nitrogen adsorption. Results show that the sample consisted of relatively uniform hollow particles with sizes ranging from 70 to 80 nm forming a strings-of-pearls-like nanostructure. The material with porous shells possessed well-developed graphitic structure with an interlayer (d(002)) spacing of 0.3369 nm and the stack height of the graphite crystallites of 9 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a hollow Au/Pd core/shell nanostructure with a raspberry surface was developed for methanol, ethanol, and formic acid oxidation in alkaline media. The results showed that it possessed better electrocatalyst performance than hollow Au nanospheres or Pd nanoparticles. The nanostructure was fabricated via a two-step method. Hollow Au nanospheres were first synthesized by a galvanic replacement reaction, and then they were coated with a layer of Pd grains. Several characterizations such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) were used to investigate the prepared nanostructures.