931 resultados para gut retention time
Resumo:
A time-resolved inverse spatially offset Raman spectrometer was constructed for depth profiling of Raman-active substances under both the lab and the field environments. The system operating principles and performance are discussed along with its advantages relative to traditional continuous wave spatially offset Raman spectrometer. The developed spectrometer uses a combination of space- and time-resolved detection in order to obtain high-quality Raman spectra from substances hidden behind coloured opaque surface layers, such as plastic and garments, with a single measurement. The time-gated spatially offset Raman spectrometer was successfully used to detect concealed explosives and drug precursors under incandescent and fluorescent background light as well as under daylight. The average screening time was 50 s per measurement. The excitation energy requirements were relatively low (20 mW) which makes the probe safe for screening hazardous substances. The unit has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than previous picosecond-based systems, to provide a functional platform for in-line or in-field sensing of chemical substances.
Resumo:
OBJECTIVE: Childhood-onset type 1 diabetes is associated with neurocognitive deficits, but there is limited evidence to date regarding associated neuroanatomical brain changes and their relationship to illness variables such as age at disease onset. This report examines age-related changes in volume and T2 relaxation time (a fundamental parameter of magnetic resonance imaging that reflects tissue health) across the whole brain. RESEARCH DESIGN AND METHODS: Type 1 diabetes, N = 79 (mean age 20.32 ± 4.24 years), and healthy control participants, N = 50 (mean age 20.53 ± 3.60 years). There were no substantial group differences on socioeconomic status, sex ratio, or intelligence quotient. RESULTS: Regression analyses revealed a negative correlation between age and brain changes, with decreasing gray matter volume and T2 relaxation time with age in multiple brain regions in the type 1 diabetes group. In comparison, the age-related decline in the control group was small. Examination of the interaction of group and age confirmed a group difference (type 1 diabetes vs. control) in the relationship between age and brain volume/T2 relaxation time. CONCLUSIONS: We demonstrated an interaction between age and group in predicting brain volumes and T2 relaxation time such that there was a decline in these outcomes in type 1 diabetic participants that was much less evident in control subjects. Findings suggest the neurodevelopmental pathways of youth with type 1 diabetes have diverged from those of their healthy peers by late adolescence and early adulthood but the explanation for this phenomenon remains to be clarified.
Resumo:
-
Resumo:
Part-time employment presents a conundrum in that it facilitates work-life priorities, while also, compared to equivalent full-time roles, attracting penalties such as diminished career prospects and lower commensurate remuneration. Recently, some promising theoretical developments in the job/work design literature suggest that consideration of work design may redress some of the penalties associated with part-time work. Adopting the framework of the Elaborated Model of Work Design by Parker and colleagues (2001), we examined this possibility through interviews with part-time professional service employees and their supervisors. The findings revealed that in organizations characterised by cultural norms of extended working hours and a singular-focused commitment to work, part-time roles were often inadequately re-designed when adapted from full-time arrangements. The findings also demonstrated that certain work design characteristics (e.g. predictability of work-flow, interdependencies with co-workers) render some roles more suitable for part-time arrangements than others. The research provides insights into gaps between policy objectives and outcomes associated with part-time work, challenges assumptions about the limitations of part-time roles, and suggests re-design strategies for more effective part-time arrangements.
Resumo:
At the international level, the higher education sector is currently being subjected to increased calls for public accountability and the current move by the OECD to rank universities based on the quality of their teaching and learning outcomes. At the national level, Australian universities and their teaching staff face numerous challenges including financial restrictions, increasing student numbers and the reality of an increasingly diverse student population. The Australian higher education response to these competing policy and accreditation demands focuses on precise explicit systems and procedures which are inflexible and conservative and which ignore the fact that assessment is the single biggest influence on how students approach their learning. By seriously neglecting the quality of student learning outcomes, assessment tasks are often failing to engage students or reflect the tasks students will face in the world of practice. Innovative assessment design, which includes new paradigms of student engagement and learning and pedagogically based technologies have the capacity to provide some measure of relief from these internal and external tensions by significantly enhancing the learning experience for an increasingly time-poor population of students. That is, the assessment process has the ability to deliver program objectives and active learning through a knowledge transfer process which increases student participation and engagement. This social constructivist view highlights the importance of peer review in assisting students to participate and collaborate as equal members of a community of scholars with both their peers and academic staff members. As a result of increasing the student’s desire to learn, peer review leads to more confident, independent and reflective learners who also become more skilled at making independent judgements of their own and others' work. Within this context, in Case Study One of this project, a summative, peer-assessed, weekly, assessment task was introduced in the first “serious” accounting subject offered as part of an undergraduate degree. The positive outcomes achieved included: student failure rates declined 15%; tutorial participation increased fourfold; tutorial engagement increased six-fold; and there was a 100% student-based approval rating for the retention of the assessment task. However, in stark contrast to the positive student response, staff issues related to the loss of research time associated with the administration of the peer-review process threatened its survival. This paper contributes to the core conference topics of new trends and experiences in undergraduate assessment education and in terms of innovative, on-line, learning and teaching practices, by elaborating the Case Study Two “solution” generated to this dilemma. At the heart of the resolution is an e-Learning, peer-review process conducted in conjunction with the University of Melbourne which seeks to both create a virtual sense of belonging and to efficiently and effectively meet academic learning objectives with minimum staff involvement. In outlining the significant level of success achieved, student-based qualitative and quantitative data will be highlighted along with staff views in a comparative analysis of the advantages and disadvantages to both students and staff of the staff-led, peer review process versus its on-line counterpart.
Resumo:
The article discusses evidence that time prevented many students from showing what they could do in the 2010 Year 7 and 9 NAPLAN numeracy tests. In addition to analysing the available data, the article discusses some NAPLAN numeracy questions that contribute to this problem. It is suggested that schools should investigate whether time limitation is a problem for their own students. The article discusses the implications of these findings for teachers preparing students for NAPLAN tests and for the developers of the tests.
Resumo:
Precise identification of the time when a change in a hospital outcome has occurred enables clinical experts to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for survival time of a clinical procedure in the presence of patient mix in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step change in the mean survival time of patients who underwent cardiac surgery. The data are right censored since the monitoring is conducted over a limited follow-up period. We capture the effect of risk factors prior to the surgery using a Weibull accelerated failure time regression model. Markov Chain Monte Carlo is used to obtain posterior distributions of the change point parameters including location and magnitude of changes and also corresponding probabilistic intervals and inferences. The performance of the Bayesian estimator is investigated through simulations and the result shows that precise estimates can be obtained when they are used in conjunction with the risk-adjusted survival time CUSUM control charts for different magnitude scenarios. The proposed estimator shows a better performance where a longer follow-up period, censoring time, is applied. In comparison with the alternative built-in CUSUM estimator, more accurate and precise estimates are obtained by the Bayesian estimator. These superiorities are enhanced when probability quantification, flexibility and generalizability of the Bayesian change point detection model are also considered.
Resumo:
The concept of local accumulation time (LAT) was introduced by Berezhkovskii and coworkers in 2010–2011 to give a finite measure of the time required for the transient solution of a reaction–diffusion equation to approach the steady–state solution (Biophys J. 99, L59 (2010); Phys Rev E. 83, 051906 (2011)). Such a measure is referred to as a critical time. Here, we show that LAT is, in fact, identical to the concept of mean action time (MAT) that was first introduced by McNabb in 1991 (IMA J Appl Math. 47, 193 (1991)). Although McNabb’s initial argument was motivated by considering the mean particle lifetime (MPLT) for a linear death process, he applied the ideas to study diffusion. We extend the work of these authors by deriving expressions for the MAT for a general one–dimensional linear advection–diffusion–reaction problem. Using a combination of continuum and discrete approaches, we show that MAT and MPLT are equivalent for certain uniform–to-uniform transitions; these results provide a practical interpretation for MAT, by directly linking the stochastic microscopic processes to a meaningful macroscopic timescale. We find that for more general transitions, the equivalence between MAT and MPLT does not hold. Unlike other critical time definitions, we show that it is possible to evaluate the MAT without solving the underlying partial differential equation (pde). This makes MAT a simple and attractive quantity for practical situations. Finally, our work explores the accuracy of certain approximations derived using the MAT, showing that useful approximations for nonlinear kinetic processes can be obtained, again without treating the governing pde directly.
Resumo:
Driver response (reaction) time (tr) of the second queuing vehicle is generally longer than other vehicles at signalized intersections. Though this phenomenon was revealed in 1972, the above factor is still ignored in conventional departure models. This paper highlights the need for quantitative measurements and analysis of queuing vehicle performance in spontaneous discharge pattern because it can improve microsimulation. Video recording from major cities in Australia plus twenty two sets of vehicle trajectories extracted from the Next Generation Simulation (NGSIM) Peachtree Street Dataset have been analyzed to better understand queuing vehicle performance in the discharge process. Findings from this research will alleviate driver response time and also can be used for the calibration of the microscopic traffic simulation model.
Resumo:
This paper presents the benefits and issues related to travel time prediction on urban network. Travel time information quantifies congestion and is perhaps the most important network performance measure. Travel time prediction has been an active area of research for the last five decades. The activities related to ITS have increased the attention of researchers for better and accurate real-time prediction of travel time. Majority of the literature on travel time prediction is applicable to freeways where, under non-incident conditions, traffic flow is not affected by external factors such as traffic control signals and opposing traffic flows. On urban environment the problem is more complicated due to conflicting areas (intersections), mid-link sources and sinks etc. and needs to be addressed.
Resumo:
Raman spectroscopy, when used in spatially offset mode, has become a potential tool for the identification of explosives and other hazardous substances concealed in opaque containers. The molecular fingerprinting capability of Raman spectroscopy makes it an attractive tool for the unambiguous identification of hazardous substances in the field. Additionally, minimal sample preparation is required compared with other techniques. We report a field portable time resolved Raman sensor for the detection of concealed chemical hazards in opaque containers. The new sensor uses a pulsed nanosecond laser source in conjunction with an intensified CCD detector. The new sensor employs a combination of time and space resolved Raman spectroscopy to enhance the detection capability. The new sensor can identify concealed hazards by a single measurement without any chemometric data treatments.
Resumo:
A new spatial logic encompassing redefined concepts of time and place, space and distance, requires a comprehensive shift in the approach to designing workplace environments for today’s adaptive, collaborative organizations operating in a dynamic business world. Together with substantial economic and cultural shifts and an increased emphasis on lifestyle considerations, the advances in information technology have prompted a radical re-ordering of organizational relationships and the associated structures, processes, and places of doing business. Within the duality of space and an augmentation of the traditional notions of place, organizational and institutional structures pose new challenges for the design professions. The literature reveals that there has always been a mono-organizational focus in relation to workplace design strategies and the burgeoning trend towards inter-organizational collaboration, enabled the identification of a gap in the knowledge relative to workplace design. The NetWorkPlaceTM© constitutes a multi-dimensional concept having the capacity to deal with the fluidity and ambiguity characteristic of the network context, as both a topic of research and the way of going about it.
Resumo:
For over half a century, it has been known that the rate of morphological evolution appears to vary with the time frame of measurement. Rates of microevolutionary change, measured between successive generations, were found to be far higher than rates of macroevolutionary change inferred from the fossil record. More recently, it has been suggested that rates of molecular evolution are also time dependent, with the estimated rate depending on the timescale of measurement. This followed surprising observations that estimates of mutation rates, obtained in studies of pedigrees and laboratory mutation-accumulation lines, exceeded long-term substitution rates by an order of magnitude or more. Although a range of studies have provided evidence for such a pattern, the hypothesis remains relatively contentious. Furthermore, there is ongoing discussion about the factors that can cause molecular rate estimates to be dependent on time. Here we present an overview of our current understanding of time-dependent rates. We provide a summary of the evidence for time-dependent rates in animals, bacteria and viruses. We review the various biological and methodological factors that can cause rates to be time dependent, including the effects of natural selection, calibration errors, model misspecification and other artefacts. We also describe the challenges in calibrating estimates of molecular rates, particularly on the intermediate timescales that are critical for an accurate characterization of time-dependent rates. This has important consequences for the use of molecular-clock methods to estimate timescales of recent evolutionary events.
Resumo:
Determining the temporal scale of biological evolution has traditionally been the preserve of paleontology, with the timing of species originations and major diversifications all being read from the fossil record. However, the ages of the earliest (correctly identified) records will underestimate actual origins due to the incomplete nature of the fossil record and the necessity for lineages to have evolved sufficiently divergent morphologies in order to be distinguished. The possibility of inferring divergence times more accurately has been promoted by the idea that the accumulation of genetic change between modern lineages can be used as a molecular clock (Zuckerkandl and Pauling, 1965). In practice, though, molecular dates have often been so old as to be incongruent even with liberal readings of the fossil record. Prominent examples include inferred diversifications of metazoan phyla hundreds of millions of years before their Cambrian fossil record appearances (e.g., Nei et al., 2001) and a basal split between modern birds (Neoaves) that is almost double the age of their earliest recognizable fossils (e.g., Cooper and Penny, 1997).