996 resultados para grafene membrane separazione gas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

气液两相流体系是一个复杂的多变量随机过程体系,流型的定义、流型过渡准则和判别方法等方面的研究是多相流学科目前研究的重点内容。本文就与气液两相流流型及其判别有关的研究状况进行了回顾和评述,力图反映近年来气液两相流流型及其判别问题研究的状态和趋势。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

英文摘要: The gas flow characteristics for various shapes of micro diffuser/nozzles have been experimentally investigated. The micro diffuser/nozzles with the lengths of 70 mu m, 90 mu m, 125 mu m and the taper angles of 7 degrees, 10 degrees, 14 degrees are designed and fabricated based on silicon micromachining technology for optimizing and comparing. The flat-wall diffuser/nozzle is 40 mu m x 5 mu m in depth and width. An experimental setup is designed to measure the gas flow rates under controlled temperature and pressure condition. Optimized values for the taper angle and the length of the diffuser/nozzle are experimentally obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measured mass flow rates and streamwise pressure distributions of gas flowing through microchannels were reported by many researchers. Assessment of these data is crucial before they are used in the examination of slip models and numerical schemes, and in the design of microchannel elements in various MEMS devices. On the basis of kinetic solutions of the mass flow rates and pressure distributions in microchannel gas flows, the measured data available are properly normalized and then are compared with each other. The 69 normalized data of measured pressure distributions are in excellent agreement, and 67 of them are within 1 +/- 0.05. The normalized data of mass flow-rates ranging between 0.95 and 1 agree well with each other as the inlet Knudsen number Kn (i) < 0.02, but they scatter between 0.85 and 1.15 as Kn (i) > 0.02 with, to some extent, a very interesting bifurcation trend.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper describes experimental investigation on the flow pattern and hydrodynamic effect of underwater gas jets from supersonic and sonic nozzles operated in correct- and imperfect expansion conditions. The flow visualizations show that jetting is the flow regime for the submerged gas injection at a high speed in the parameter range under consideration. The obtained results indicate that high-speed gas jets in still water induce large pressure pulsations upstream of the nozzle exit and the presence of shock-cell structure in the over- and under-expanded jets leads to an increase in the intensity of the jet-induced hydrodynamic pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rarefied gas flows through micro-channels are simulated using particle approaches, named as the information preservation (IP) method and the direct simulation Monte Carlo (DSMC) method. In simulating the low speed flows in long micro-channels the DSMC method encounters the problem of large sample size demand and the difficulty of regulating boundary conditions at the inlet and outlet. Some important computational issues in the calculation of long micro-channel flows by using the IP method, such as the use the conservative form of the mass conservation equation to guarantee the adjustment of the inlet and outlet boundary conditions and the super-relaxation scheme to accelerate the convergence process, are addressed. Stream-wise pressure distributions and mass fluxes through micro-channels given by the IP method agree well with experimental data measured in long micro-channels by Pong et al. (with a height to length ratio of 1.2:3000), Shih et al. (l.2:4800), Arkilic et al. and Arkilic (l.3:7500), respectively. The famous Knudsen minimum of normalized mass flux is observed in IP and DSMC calculations of a short micro-channel over the entire flow regime from continuum to free molecular, whereas the slip Navier-Stokes solution fails to predict it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of void fraction is of importance to the oil industry and chemical industry. In this article, the principle and mathematical method of determining the void fraction of horizontal gas-liquid flow by using a single-energy gamma-ray system is described. The gamma-ray source is the radioactive isotope of Am-241 with gamma-ray energy of 59.5 keV. The time-averaged value of the void fraction in a 50.0-mm i.d. transparent horizontal pipeline is measured under various combinations of the liquid flow and gas flow. It is found that increasing the gas flow rate at a fixed liquid flow rate would increase the void fraction. Test data are compared with the predictions of the correlations and a good agreement is found. The result shows that the designed gamma-ray system can be used for measuring the void fraction in a horizontal gas-liquid two-phase flow with high accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A visual observation of liquid-gas two-phase flow in anode channels of a direct methanol proton exchange membrane fuel cells in microgravity has been carried out in a drop tower. The anode flow bed consisted of 2 manifolds and 11 parallel straight channels. The length, width and depth of single channel with rectangular cross section was 48.0 mm, 2.5 mm and 2.0 mm, respectively. The experimental results indicated that the size of bubbles in microgravity condition is bigger than that in normal gravity. The longer the time, the bigger the bubbles. The velocity of bubbles rising is slower than that in normal gravity because buoyancy lift is very weak in microgravity. The flow pattern in anode channels could change from bubbly flow in normal gravity to slug flow in microgravity. The gas slugs blocked supply of reactants from channels to anode catalyst layer through gas diffusion layer. When the weakened mass transfer causes concentration polarization, the output performance of fuel cells declines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesion forces of Dipalmitoylphosphatidylcholine ( DPPC) membrane in the gel phase are investigated by molecular dynamics ( MD) simulation. In the simulations, individual DPPC molecules are pulled out of DPPC membranes with different rates and we get the maximum adhesion forces of DPPC membrane. We find that the maximum adhesion forces increase with pull rate, from about 400 to 700 pN when pull rates are from 0.001 to 0.03 nm/ps. We analyze the relationship between pull rate and adhesion forces of different origins using Brownian dynamics and notice that viscosity of solvent plays an important role in adhesion forces. Then we simulate the motion of a single DPPC molecule in solvent and it elucidates that the maximum drag force is almost linear with respect to the pull rate. We use Stokes' relation to describe the motion of a single DPPC molecule and deduce the effective length of a DPPC molecule. Conformational analyses indicate that the free energy variation of a DPPC molecule inside and outside of the DPPC membrane is an essential part of adhesion energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(dimethylsiloxane) (PDMS) has been widely used in lab-on-a-chip and micro- total analysis systems (mu-TAS), thus wetting and electrowetting behaviors of PDMS are of great importance in these devices. PDMS is a kind of soft polymer material, so the elastic deformation of PDMS membrane by a droplet cannot be neglected due to the vertical component of the interfacial tension between the liquid and vapor, and this vertical component of liquid-vapor surface tension is also balanced by the stress distribution within the PDMS membrane. Such elastic deformation and stress distribution not only affect the exact measurement of contact angle, but also have influence on the micro-fluidic behavior of the devices. Using ANSYS code, we simulated numerically the elastic deformation and stress distribution of PDMS membrane on a rigid substrate due to the liquid-vapor surface tension. It is found that the vertical elastic deformation of the PDMS membrane is on the order of several tens of nanometers due to the application of a droplet with a diameter of 2.31 mm, which is no longer negligible for lab-on-a-chip and mu-TAS. The vertical elastic deformation increases with the thickness of the PDMS membrane, and there exists a saturated membrane thickness, regarded as a semi-infinite membrane thickness, and the vertical elastic deformation reaches a limiting value when the membrane thickness is equal to or thicker than such saturated thickness. (C) Koninklijke Brill NV, Leiden, 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polydimethylsiloxane (PDMS) has been widely used as a base material for bio-MEMS/NEMS devices. It is difficult for PDMS to transfer and spread aqueous solution as a kind of highly hydrophobic material. Therefore, surface modification is necessary for PDMS to make it hydrophilic. In this paper, a method of hydrophilization of PDMS surface is proposed. Gold is sputtered to the PDMS substrate by sputter coater in different average thicknesses. Relationship between the average thickness of gold on the PDMS substrate and the contact angle of the surface was studied. It was found that even gold of average thickness less than 1 nm can result in about 25 degrees change of contact angle. AFM is also used to get topographic information of PDMS surface coated with gold. Three cases are classified with different amount of Au: (1) Heterogeneous zone; (2) Transition zone; (3) Film zone. For heterogeneous zone, a simple model about heterogeneous phase wetting is put forward to interpret this phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the drag reduction by gas injection for power-law fluid flow in stratified and slug flow regimes has been studied. Experimentswere conducted to measure the pressure gradient within air/CMC solutions in a horizontal Plexiglas pipe that had a diameter of 50mm and a length of 30 m. The drag reduction ratio in stratified flow regime was predicted using the two-fluid model. The results showed that the drag reduction should occur over the large range of the liquid holdup when the flow behaviour index remained at the low value. Furthermore, for turbulent gas-laminar liquid stratified flow, the drag reduction by gas injection for Newtonian fluid was more effective than that for shear-shinning fluid, when the dimensionless liquid height remained in the area of high value. The pressure gradient model for a gas/Newtonian liquid slug flow was extended to liquids possessing the Ostwald–de Waele power law model. The proposed model was validated against 340 experimental data point over a wide range of operating conditions, fluid characteristics and pipe diameters. The dimensionless pressure drop predicted was well inside the 20% deviation region for most of the experimental data. These results substantiated the general validity of the model presented for gas/non-Newtonian two-phase slug flows.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of the two-continuum model of dilute gas-solid suspensions, the dynamic behavior of inertial particles in supersonic dusty-gas flows past a blunt body is studied for moderate Reynolds numbers, when the Knudsen effect in the interphase momentum exchange is significant. The limits of the inertial particle deposition regime in the space of governing parameters are found numerically under the assumption of the slip and free-molecule flow regimes around particles. As a model problem, the flow structure is obtained for a supersonic dusty-gas point-source flow colliding with a hypersonic flow of pure gas. The calculations performed using the full Lagrangian approach for the near-symmetry-axis region and the free-molecular flow regime around the particles reveal a multi-layer structure of the dispersed-phase density with a sharp accumulation of the particles in some thin regions between the bow and termination shock waves.