982 resultados para glass fibers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass beads were used to improve the mechanical and thermal properties of high-density polyethylene (HDPE). HDPE/glass-bead blends were prepared in a Brabender-like apparatus, and this was followed by press molding. Static tensile measurements showed that the modulus of the HDPE/glass-bead blends increased considerably with increasing glass-bead content, whereas the yield stress remained roughly unchanged at first and then decreased slowly with increasing glass-bead content. Izod impact tests at room temperature revealed that the impact strength changed very slowly with increasing glass-bead content up to a critical value; thereafter, it increased sharply with increasing glass-bead content. That is, the lzod impact strength of the blends underwent a sharp transition with increasing glass-bead content. It was calculated that the critical interparticle distance for the HDPE/glass-bead blends at room temperature (25degreesC) was 2.5 mum. Scanning electron microscopy observations indicated that the high impact strength of the HDPE/glass-bead blends resulted from the deformation of the HDPE matrix. Dynamic mechanical analyses and thermogravimetric measurements implied that the heat resistance and heat stability of the blends tended to increase considerably with increasing glass-bead content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pressure-dependent glass-transition temperatures (T-g's) of poly(methyl methacrylate) (PMMA)/poly(styrene-co-acrylonitrile) (SAN) blends were determined by pressure-volume-temperature (PVT) dilatometry via an isobaric cooling procedure. The Gordon-Taylor and Fox equations were used to evaluate the relationships between the T-g's and compositions of the PMMA/SAN system at different pressures. The relationships were well fitted by the Gordon-Taylor equation, and the experimental data for T-g positively deviated from the values calculated with the Fox equation. Also, the influence of the cooling rate (during the PVT measurements) on T-g was examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influences of surfactants and medical drugs on the diameter size and uniformity of electrospun poly(L-lactic acid) (PLLA) fibers were examined by adding various surfactants (cationic, anionic, and nonionic) and typical drugs into the PLLA solution. Significant diameter reduction and uniformity improvement were observed. It was shown that the drugs were capsulated inside of the fibers and the drug release in the presence of proteinase K followed nearly zero-order kinetics due to the degradation of the PLLA fibers. Such ultrafine fiber mats containing drugs may find clinical applications in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodegradable poly(I-lactide) (PLLA) and poly(e-caprolactone) (PCL) were electrospun into ultrafine fibers. The technological parameters influencing the spinning process and morphology of the fibers obtained were examined. These parameters included solvent composition, addition of certain organic salts, molecular weight and concentration of the polymers, capillary diameter, air ventilation, and pressure imposed on the surface of the solution as well as electrostatic field. By properly choosing and adjusting these parameters, submicron PLLA and PCL fibers with a narrow diameter distribution were prepared. Scanning electronic microscopy was used to observe the morphology and diameter size of the fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tapping mode atomic force microscopy (AFM) was applied to study the adsorption behavior of methanol on mica, highly oriented pyrolytic graphite (HOPG) and indium-tin oxide (ITO) coated glass substrates. On mica and HOPG substrates surfaces, the thin films of methanol with bilayer and multilayer were observed, respectively. The formation of irregular islands of methanol was also found on HOPG surface. On ITO surface only aggregates and clusters of methanol molecules were formed. The influence of sample preparation on the adsorption was discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline (PANI) in an emeraldine-base form, synthesized by chemical oxidation polymerization, was doped with camphor sulfonic acid (CSA). The conducting complex (PANI-CSA) and a matrix, polyamide-66, polyamide-11, or polyamide-1010, were dissolved in a mixed solvent, and the blend solution was dropped onto glass and dried for the preparation of PANI/polyamide composite films. The conductivity of the films ranged from 10(-7) to 10(0) S/cm when the weight fraction of PANI-CSA in the matrices changed from 0.01 to 0.09, and the percolation threshold was about 2 wt %. The morphology of the composite films before and after etching was studied with scanning electron microscopy, and the thermal properties of the composite films were monitored with differential scanning calorimetry. The results indicated that the morphology of the blend systems was in a globular form. The addition of PANI-CSA to the films resulted in a decrease in the melting temperature of the composite films and also affected the crystallinity of the blend systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-color LLP phenomenon was observed in Mn2+-doped ZnO-B2O3-SiO2 glassceramics after the irradiation of a UV lamp at room temperature. Transparent ZnO-B2O3-SiO2 glass emitted reddish LLP while opaque glass-ceramics prepared by the glass sample after heat treatment emitted yellowish or greenish LLP. The change of the phosphorescence is due to the alteration of co-ordination state of Mn2+. The phosphorescence of the samples was seen in the dark with naked eyes even 12 h after the irradiation with a UV lamp (lambda(max) = 254 nm) for 30 min. Based on the approximative t(-1) decay law of the phosphorescence, we suggest that the LLP is attributed to the thermally assisted electron-hole recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Historically, polyaniline (PANI) had been considered an intractable material, but it can be dissolved in some solvents. Therefore, it could be processed into films or fibers. A process of preparing a blend of conductive fibers of PANI/poly-omega-aminoun-decanoyle (PA11) is described in this paper. PANI in the emeraldine base was blended with PA11 in concentrated sulfuric acid (c-H,SO,) to form a spinning dope solution. This solution was used to spin conductive PANI/PA11 fibers by wet-spinning technology. As-spun fibers were obtained by spinning the dopes into coagulation bath water or diluted acid and drawn fibers were obtained by drawing the as-spun fibers in warm drawing bath water. A scanning electron microscope was employed to study the effect of the acid concentration in the coagulation bath on the microstructure of as-spun fibers. The results showed that the coagulating rate of as-spun fibers was reduced and the size of pore shrank with an increase in the acid concentration in the coagulation bath. The weight fraction of PANI in the dope solution also had an influence on the microstructure of as-spun fibers. The microstructure of as-spun fibers had an influence on the drawing process and on the mechanical properties of the drawn fibers. Meanwhile, the electrically conductive property of the drawn fibers with different percentage of PANI was measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of homopolyimides and copolyimides was synthesized by the solution condensation of biphenyltetracarboxylic dianhydride (BPDA) isomers and various diamines followed by chemical imidization. These polyimides had intermediate to high molecular weights with inherent viscosities of 0.34-1.01 dL/g for homopolyimides and 0.48-1.02 dL/g for copolyimides. Thermogravimetric analysis indicated that the aromatic polyimides were stable up to 500degreesC, and the 5% weight loss temperatures were recorded in the range of 506-597degreesC in an air atmosphere and in the range of 517-601degreesC in a nitrogen atmosphere, depending on the diamines used. The glass transition temperatures of aromatic homopolyimides were above 271degreesC, while the glass transition temperatures of the copolyimides increased with an increase in the 2, 2', 3, 3'-BPDA-component. The effects of the chemical structure of the polymer chain on the solubility were investigated. It was found that the solubility of BPDA-based polyimides could be improved by the introduction of flexible units, nonlinear and non-coplanar units, and copolymerization. The polyimides with nonlinear and non-coplanar units derived from 2, 2', 3, 3'-BPDA appeared to have prominently enhanced solubility in polar aprotic solvents and polychlorocarbons when compared with the homopolyimide derived from 3, 3', 4, 4'-BPDA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrocatalytic reduction of O-2 and H2O2 at the glass carbon electrode modified with microperoxidase-11 immobilized with Nafion film has been studied by means of cyclic voltammetry and rotating disk electrode techniques. The modified electrode shows high catalytic activity toward the reduction of both O-2 and H2O2. The rate constants of Oz and H2O2 reduction at the modified electrode have been measured and compared. It is found that O-2 undergoes a four-electron reduction at the modified electrode and the catalytic activity for the reduction of O-2 is dependent on the pH of the solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of entanglements on the glass transition and structural relaxation behaviors has been studied for polystyrene (PS) and phenolphthalein poly(ether sulfone) (PES-C) samples by fast evaporation of the solution of concentrations varying from above the overlapping concentration to far below it, and compared to the results we have studied previously in PC. It has been found that for all the polymers we have studied, in the concentrated solution region, the T-g of the samples obtained from solution are independent of the change of concentration and are very close to that of normal bulk samples, whereas in the dilute solution region the T-g of the samples decrease with the logarithm of decreasing concentration. The critical concentrations that divide the two distinct regions for the three polymers are 0.9% g/mL for PC, 0.1% g/mL for PS, and 1% g/mL for PES-C. The decrease of T-g of the samples is interpreted by the decrease of intermolecular entanglements as the isolation of polymer chains, and the entanglement of polymer chains restrained the mobility of the segments. The structural relaxation behavior of the polymers is also found to be different from that of normal bulk samples. The enthalpies of single-chain samples are lower than that of the bulk ones, which correspond to the lower glass transition temperature; the peaks are lower and broader, and the relaxed enthalpy is much lower as compared to that of bulk samples. In the three polymers we have studied, the influence of change of entanglements on both the decrease in glass transition temperature and relaxed enthalpy is the most significant for PS and the least for PES-C. It is indicated that the interactions in the flexible polymers are weak; thus, the restraint of the entanglements on the mobility of the segments plays a more important role in the flexible polymers, and the change of entanglement in the flexible polymers has a more significant influence on the physical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facilitated proton transfer across the water/1,2-dichloroethane (DCE) interface supported on the tips of micro- and nano-pipets by o-phenanthroline (Phen) was studied by using cyclic voltammetry. The formed micro- and nano-liquid/liquid interfaces functioned as micro- and nano-electrodes under certain experimental conditions. The dependence of the half-wave potentials on the aqueous solutions acidities was studied and the ratio of association constants between Phen and proton in the aqueous and DCE phases was calculated by the method proposed by Matsuda et al.. The standard rate constant (k(0)) and the transfer coefficient (alpha) evaluated by using nano-pipets were equal to 0.183 +/- 0.054 cm/s and 0.70 +/- 0.09, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline (PANI), a member of the intrinsically conducting polymer (ICPs) family, was blended with polyamide-11 (polyco-aminoundecanoyle) in concentrated sulfuric acid. The above solution was used to spin conductive PANI/polyamide-11 fibers by wet-spinning technology. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to study the two-phase morphology of the conductive PANI/polyamide-11 fibers. The micrographs of the cross-section, the axial section and the surface of the monofilament demonstrated that the two blend components were incompatible. The morphology of PANI in the fibers was of fibrillar form, which was valuable for producing conducting channels. The electrical conductivity of the fibers was from 10(-6) to 10(-1) S/cm with the different PANI fraction and the percolation threshold was about 5 wt.%. By comparing the two blend systems of PANI/Polyamide-11 fibers and carbon black filled poly(ethylene terephthalate) (PET) fibers, it was shown that the morphology of the conductive component had an influence on electrical conductivity, The former had higher conductivity and lower percolation threshold than the latter. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The toughness of high-density polyethylene (HDPE)/glass-bead blends containing various glass-bead contents as a function of temperature was studied. The toughness of the blends was determined from the notch Izod impact test. A sharp brittle-ductile transition was observed in impact strength-interparticle distance (ID) curves at various temperatures. The brittle-ductile transition of HDPE/glass-bead blends occurred either with reduced ID or with increased temperature. The results indicated that the brittle-ductile-transition temperature dropped markedly with increasing glass-bead content. Moreover, the correlation between the critical interparticle distance (ID.) and temperature was obtained. Similar to the ID, of polymer blends with elastomers, the ID, nonlinearly increased with increasing temperature. However, this was the first observation of the variation of the ID, with temperature for polymer blends with rigid particles. (C) 2001 John Wiley & Sons, Inc. J Polym. Sci Part B: Polym. Phys 39: 1855-1859, 2001.