820 resultados para fuzzy logic
Resumo:
A procedure that uses fuzzy ARTMAP and K-Nearest Neighbor (K-NN) categorizers to evaluate intrinsic and extrinsic speaker normalization methods is described. Each classifier is trained on preprocessed, or normalized, vowel tokens from about 30% of the speakers of the Peterson-Barney database, then tested on data from the remaining speakers. Intrinsic normalization methods included one nonscaled, four psychophysical scales (bark, bark with end-correction, mel, ERB), and three log scales, each tested on four different combinations of the fundamental (Fo) and the formants (F1 , F2, F3). For each scale and frequency combination, four extrinsic speaker adaptation schemes were tested: centroid subtraction across all frequencies (CS), centroid subtraction for each frequency (CSi), linear scale (LS), and linear transformation (LT). A total of 32 intrinsic and 128 extrinsic methods were thus compared. Fuzzy ARTMAP and K-NN showed similar trends, with K-NN performing somewhat better and fuzzy ARTMAP requiring about 1/10 as much memory. The optimal intrinsic normalization method was bark scale, or bark with end-correction, using the differences between all frequencies (Diff All). The order of performance for the extrinsic methods was LT, CSi, LS, and CS, with fuzzy AHTMAP performing best using bark scale with Diff All; and K-NN choosing psychophysical measures for all except CSi.
Resumo:
A nonparametric probability estimation procedure using the fuzzy ARTMAP neural network is here described. Because the procedure does not make a priori assumptions about underlying probability distributions, it yields accurate estimates on a wide variety of prediction tasks. Fuzzy ARTMAP is used to perform probability estimation in two different modes. In a 'slow-learning' mode, input-output associations change slowly, with the strength of each association computing a conditional probability estimate. In 'max-nodes' mode, a fixed number of categories are coded during an initial fast learning interval, and weights are then tuned by slow learning. Simulations illustrate system performance on tasks in which various numbers of clusters in the set of input vectors mapped to a given class.
Resumo:
This paper shows how knowledge, in the form of fuzzy rules, can be derived from a self-organizing supervised learning neural network called fuzzy ARTMAP. Rule extraction proceeds in two stages: pruning removes those recognition nodes whose confidence index falls below a selected threshold; and quantization of continuous learned weights allows the final system state to be translated into a usable set of rules. Simulations on a medical prediction problem, the Pima Indian Diabetes (PID) database, illustrate the method. In the simulations, pruned networks about 1/3 the size of the original actually show improved performance. Quantization yields comprehensible rules with only slight degradation in test set prediction performance.
Resumo:
An incremental, nonparametric probability estimation procedure using the fuzzy ARTMAP neural network is introduced. In slow-learning mode, fuzzy ARTMAP searches for patterns of data on which to build ever more accurate estimates. In max-nodes mode, the network initially learns a fixed number of categories, and weights are then adjusted gradually.
Resumo:
Fusion ARTMAP is a self-organizing neural network architecture for multi-channel, or multi-sensor, data fusion. Fusion ARTMAP generalizes the fuzzy ARTMAP architecture in order to adaptively classify multi-channel data. The network has a symmetric organization such that each channel can be dynamically configured to serve as either a data input or a teaching input to the system. An ART module forms a compressed recognition code within each channel. These codes, in turn, beco1ne inputs to a single ART system that organizes the global recognition code. When a predictive error occurs, a process called parallel match tracking simultaneously raises vigilances in multiple ART modules until reset is triggered in one of thmn. Parallel match tracking hereby resets only that portion of the recognition code with the poorest match, or minimum predictive confidence. This internally controlled selective reset process is a type of credit assignment that creates a parsimoniously connected learned network.
Resumo:
The Fuzzy ART system introduced herein incorporates computations from fuzzy set theory into ART 1. For example, the intersection (n) operator used in ART 1 learning is replaced by the MIN operator (A) of fuzzy set theory. Fuzzy ART reduces to ART 1 in response to binary input vectors, but can also learn stable categories in response to analog input vectors. In particular, the MIN operator reduces to the intersection operator in the binary case. Learning is stable because all adaptive weights can only decrease in time. A preprocessing step, called complement coding, uses on-cell and off-cell responses to prevent category proliferation. Complement coding normalizes input vectors while preserving the amplitudes of individual feature activations.
Resumo:
A Fuzzy ART model capable of rapid stable learning of recognition categories in response to arbitrary sequences of analog or binary input patterns is described. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize only binary input patterns. The generalization to learning both analog and binary input patterns is achieved by replacing appearances of the intersection operator (n) in AHT 1 by the MIN operator (Λ) of fuzzy set theory. The MIN operator reduces to the intersection operator in the binary case. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy set theory play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Learning stops when the input space is covered by boxes. With fast learning and a finite input set of arbitrary size and composition, learning stabilizes after just one presentation of each input pattern. A fast-commit slow-recode option combines fast learning with a forgetting rule that buffers system memory against noise. Using this option, rare events can be rapidly learned, yet previously learned memories are not rapidly erased in response to statistically unreliable input fluctuations.
Resumo:
A neural network realization of the fuzzy Adaptive Resonance Theory (ART) algorithm is described. Fuzzy ART is capable of rapid stable learning of recognition categories in response to arbitrary sequences of analog or binary input patterns. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize only binary input patterns, thus enabling the network to learn both analog and binary input patterns. In the neural network realization of fuzzy ART, signal transduction obeys a path capacity rule. Category choice is determined by a combination of bottom-up signals and learned category biases. Top-down signals impose upper bounds on feature node activations.
Resumo:
This article compares the performance of Fuzzy ARTMAP with that of Learned Vector Quantization and Back Propagation on a handwritten character recognition task. Training with Fuzzy ARTMAP to a fixed criterion used many fewer epochs. Voting with Fuzzy ARTMAP yielded the highest recognition rates.
Resumo:
BACKGROUND: In recent years large bibliographic databases have made much of the published literature of biology available for searches. However, the capabilities of the search engines integrated into these databases for text-based bibliographic searches are limited. To enable searches that deliver the results expected by comparative anatomists, an underlying logical structure known as an ontology is required. DEVELOPMENT AND TESTING OF THE ONTOLOGY: Here we present the Mammalian Feeding Muscle Ontology (MFMO), a multi-species ontology focused on anatomical structures that participate in feeding and other oral/pharyngeal behaviors. A unique feature of the MFMO is that a simple, computable, definition of each muscle, which includes its attachments and innervation, is true across mammals. This construction mirrors the logical foundation of comparative anatomy and permits searches using language familiar to biologists. Further, it provides a template for muscles that will be useful in extending any anatomy ontology. The MFMO is developed to support the Feeding Experiments End-User Database Project (FEED, https://feedexp.org/), a publicly-available, online repository for physiological data collected from in vivo studies of feeding (e.g., mastication, biting, swallowing) in mammals. Currently the MFMO is integrated into FEED and also into two literature-specific implementations of Textpresso, a text-mining system that facilitates powerful searches of a corpus of scientific publications. We evaluate the MFMO by asking questions that test the ability of the ontology to return appropriate answers (competency questions). We compare the results of queries of the MFMO to results from similar searches in PubMed and Google Scholar. RESULTS AND SIGNIFICANCE: Our tests demonstrate that the MFMO is competent to answer queries formed in the common language of comparative anatomy, but PubMed and Google Scholar are not. Overall, our results show that by incorporating anatomical ontologies into searches, an expanded and anatomically comprehensive set of results can be obtained. The broader scientific and publishing communities should consider taking up the challenge of semantically enabled search capabilities.
Resumo:
O uso cada vez mais intenso de conceitos subjetivos - provenientes da lógica fuzzy - aplicados a problemas reais nos motivou a desenvolver procedimentos para a introdução destas idéias no âmbito do ensino médio. O projeto propõe inicialmente o estudo de conjuntos fuzzy que podem ser entendidos com exemplos - de variação populacional, de controle de pragas e de epidemias. Posteriormente, usar as “operações fuzzy” Sup e Inf em produtos de matrizes para realizar diagnósticos e avaliações subjetivas. As situações abordadas já estão na literatura (Barros e Bassanezi, 2006), entretanto não como fonte para o Ensino Médio. Um dos objetivos principais deste trabalho é contrapor a crença de exatidão da matemática clássica com os resultados provenientes de lógica subjetiva, utilizando conceitos apropriados para os estudantes destas séries: teoria dos conjuntos, relações e funções, matrizes, equações de diferenças e outros.
Resumo:
This paper presents a reified temporal logic for representing and reasoning about temporal and non-temporal relationships between non-temporal assertions. A clear syntax and semantics for the logic is formally provided. Three types of predicates, temporal predicates, non-temporal predicates and meta-predicates, are introduced. Terms of the proposed language are partitioned into three types, temporal terms, non-temporal terms and propositional terms. Reified propositions consist of formulae with each predicate being either a temporal predicate or a meta-predicate. Meta-predicates may take both temporal terms and propositional terms together as arguments or take propositional terms alone. A standard formula of the classical first-order language with each predicate being a non-temporal predicate taking only non-temporal terms as arguments is reified as just a propositional term. A general time ontology has been provided which can be specialized to a variety of existing temporal systems. The new logic allows one to predicate and quantify over propositional terms while according a special status of time; for example, assertions such as ‘effects cannot precede their causes’ is ensured in the logic, and some problematic temporal aspects including the delay time between events and their effects can be conveniently expressed. Applications of the logic are presented including the characterization of the negation of properties and their contextual sentences, and the expression of temporal relations between actions and effects.
Resumo:
Logic-based models are thriving within artificial intelligence. A great number of new logics have been defined, and their theory investigated. Epistemic logics introduce modal operators for knowledge or belief; deontic logics are about norms, and introduce operators of deontic necessity and possibility (i.e., obligation or prohibition). And then we have a much investigated class—temporal logics—to whose application to engineering this special issue is devoted. This kind of formalism deserves increased widespread recognition and application in engineering, a domain where other kinds of temporal models (e.g., Petri nets) are by now a fairly standard part of the modelling toolbox.
Resumo:
There are mainly two known approaches to the representation of temporal information in Computer Science: modal logic approaches (including tense logics and hybrid temporal logics) and predicate logic approaches (including temporal argument methods and reified temporal logics). On one hand, while tense logics, hybrid temporal logics and temporal argument methods enjoy formal theoretical foundations, their expressiveness has been criticised as not power enough for representing general temporal knowledge; on the other hand, although current reified temporal logics provide greater expressive power, most of them lack of complete and sound axiomatic theories. In this paper, we propose a new reified temporal logic with a clear syntax and semantics in terms of a sound and complete axiomatic formalism which retains all the expressive power of the approach of temporal reification.
Resumo:
The creation of my hypermedia work Index of Love, which narrates a love story as an archive of moments, images and objects recollected, also articulated for me the potential of the book as electronic text. The book has always existed as both narrative and archive. Tables of contents and indexes allow the book to function simultaneously as linear narrative and non-linear, searchable database. The book therefore has more in common with the so-called 'new media' of the 21st century than it does with the dominant 20th century media of film, video and audiotape, whose logic and mode of distribution are resolutely linear. My thesis is that the non-linear logic of new media brings to the fore an aspect of the book - the index - whose potential for the production of narrative is only just beginning to be explored. When a reader/user accesses an electronic work, such as a website, via its menu, they simultaneously experience it as narrative and archive. The narrative journey taken is created through the menu choices made. Within the electronic book, therefore, the index (or menu) has the potential to function as more than just an analytical or navigational tool. It has the potential to become a creative, structuring device. This opens up new possibilities for the book, particularly as, in its paper based form, the book indexes factual work, but not fiction. In the electronic book, however, the index offers as rich a potential for fictional narratives as it does for factual volumes. [ABSTRACT FROM AUTHOR]