988 resultados para emission time
Resumo:
Abstract. For interactive systems, recognition, reproduction, and generalization of observed motion data are crucial for successful interaction. In this paper, we present a novel method for analysis of motion data that we refer to as K-OMM-trees. K-OMM-trees combine Ordered Means Models (OMMs) a model-based machine learning approach for time series with an hierarchical analysis technique for very large data sets, the K-tree algorithm. The proposed K-OMM-trees enable unsupervised prototype extraction of motion time series data with hierarchical data representation. After introducing the algorithmic details, we apply the proposed method to a gesture data set that includes substantial inter-class variations. Results from our studies show that K-OMM-trees are able to substantially increase the recognition performance and to learn an inherent data hierarchy with meaningful gesture abstractions.
Resumo:
An advanced rule-based Transit Signal Priority (TSP) control method is presented in this paper. An on-line transit travel time prediction model is the key component of the proposed method, which enables the selection of the most appropriate TSP plans for the prevailing traffic and transit condition. The new method also adopts a priority plan re-development feature that enables modifying or even switching the already implemented priority plan to accommodate changes in the traffic conditions. The proposed method utilizes conventional green extension and red truncation strategies and also two new strategies including green truncation and queue clearance. The new method is evaluated against a typical active TSP strategy and also the base case scenario assuming no TSP control in microsimulation. The evaluation results indicate that the proposed method can produce significant benefits in reducing the bus delay time and improving the service regularity with negligible adverse impacts on the non-transit street traffic.
Resumo:
This paper presents an efficient face detection method suitable for real-time surveillance applications. Improved efficiency is achieved by constraining the search window of an AdaBoost face detector to pre-selected regions. Firstly, the proposed method takes a sparse grid of sample pixels from the image to reduce whole image scan time. A fusion of foreground segmentation and skin colour segmentation is then used to select candidate face regions. Finally, a classifier-based face detector is applied only to selected regions to verify the presence of a face (the Viola-Jones detector is used in this paper). The proposed system is evaluated using 640 x 480 pixels test images and compared with other relevant methods. Experimental results show that the proposed method reduces the detection time to 42 ms, where the Viola-Jones detector alone requires 565 ms (on a desktop processor). This improvement makes the face detector suitable for real-time applications. Furthermore, the proposed method requires 50% of the computation time of the best competing method, while reducing the false positive rate by 3.2% and maintaining the same hit rate.
Resumo:
Deploying networked control systems (NCSs) over wireless networks is becoming more and more popular. However, the widely-used transport layer protocols, Transmission Control Protocol (TCP) and User Datagram Protocol (UDP), are not designed for real-time applications. Therefore, they may not be suitable for many NCS application scenarios because of their limitations on reliability and/or delay performance, which real-control systems concern. Considering a typical type of NCSs with periodic and sporadic real-time traffic, this paper proposes a highly reliable transport layer protocol featuring a packet loss-sensitive retransmission mechanism and a prioritized transmission mechanism. The packet loss-sensitive retransmission mechanism is designed to improve the reliability of all traffic flows. And the prioritized transmission mechanism offers differentiated services for periodic and sporadic flows. Simulation results show that the proposed protocol has better reliability than UDP and improved delay performance than TCP over wireless networks, particularly when channel errors and congestions occur.
Resumo:
Conspicuity limitations make bicycling at night dangerous. This experiment quantified bicyclists’ estimates of the distance at which approaching drivers would first recognize them. Twenty five participants (including 13 bicyclists who rode at least once per week, and 12 who rode once per month or less) cycled in place on a closed-road circuit at night-time and indicated when they were confident that an approaching driver would first recognize that a bicyclist was present. Participants wore black clothing alone or together with a fluorescent bicycling vest, a fluorescent bicycling vest with additional retroreflective tape, or the fluorescent retroreflective vest plus ankle and knee reflectors in a modified ‘biomotion’ configuration. The bicycle had a light mounted on the handlebars which was either static, flashing or off. Participants judged that black clothing made them least visible, retroreflective strips on the legs in addition to a retroreflective vest made them most visible and that adding retroreflective materials to a fluorescent vest provides no conspicuity benefits. Flashing bicycle lights were associated with higher conspicuity than static lights. Additionally, occasional bicyclists judged themselves to be more visible than did frequent bicyclists. Overall, bicyclists overestimated their conspicuity compared to previously collected recognition distances and underestimated the conspicuity benefits of retroreflective markings on their ankles and knees. Participants mistakenly judged that a fluorescent vest that did not include retroreflective material would enhance their night-time conspicuity. These findings suggest that bicyclists have dangerous misconceptions concerning the magnitude of the night-time conspicuity problem and the potential value of conspicuity treatments.
Resumo:
This study draws on communication accommodation theory, social identity theory and cognitive dissonance theory to drive a ‘Citizen’s Round Table’ process that engages community audiences on energy technologies and strategies that potentially mitigate climate change. The study examines the effectiveness of the process in determining the strategies that engage people in discussion. The process is designed to canvas participants’ perspectives and potential reactions to the array of renewable and non-renewable energy sources, in particular, underground storage of CO2. Ninety-five people (12 groups) participated in the process. Questionnaires were administered three times to identify changes in attitudes over time, and analysis of video, audio-transcripts and observer notes enabled an evaluation of level of engagement and communication among participants. The key findings of this study indicate that the public can be meaningfully engaged in discussion on the politically sensitive issue of CO2 capture and storage (CCS) and other low emission technologies. The round table process was critical to participants’ engagement and led to attitude change towards some methods of energy production. This study identifies a process that can be used successfully to explore community attitudes on politically-sensitive topics and encourages an examination of attitudes and potential attitude change.
Resumo:
BACKGROUND: Hot and cold temperatures have been associated with childhood asthma. However, the relationship between daily temperature variation and childhood asthma is not well understood. This study aimed to examine the relationship between diurnal temperature range (DTR) and childhood asthma. METHODS: A Poisson generalized linear model combined with a distributed lag non-linear model was used to examine the relationship between DTR and emergency department admissions for childhood asthma in Brisbane, from January 1st 2003 to December 31st 2009. RESULTS: There was a statistically significant relationship between DTR and childhood asthma. The DTR effect on childhood asthma increased above a DTR of 10[degree sign]C. The effect of DTR on childhood asthma was the greatest for lag 0--9 days, with a 31% (95% confidence interval: 11% -- 58%) increase of emergency department admissions per 5[degree sign]C increment of DTR. Male children and children aged 5--9 years appeared to be more vulnerable to the DTR effect than others. CONCLUSIONS: Large DTR may trigger childhood asthma. Future measures to control and prevent childhood asthma should include taking temperature variability into account. More protective measures should be taken after a day of DTR above10[degree sign]C.
Resumo:
Topic recommendation can help users deal with the information overload issue in micro-blogging communities. This paper proposes to use the implicit information network formed by the multiple relationships among users, topics and micro-blogs, and the temporal information of micro-blogs to find semantically and temporally relevant topics of each topic, and to profile users' time-drifting topic interests. The Content based, Nearest Neighborhood based and Matrix Factorization models are used to make personalized recommendations. The effectiveness of the proposed approaches is demonstrated in the experiments conducted on a real world dataset that collected from Twitter.com.
Resumo:
Goethite and Al-substituted goethite were synthesized from the reaction between ferric nitrate and/or aluminum nitrate and potassium hydroxide. XRF, XRD, TEM with EDS were used to characterize the chemical composition, phase and lattice parameters, and morphology of the synthesized products. The results show that d(020) decreases from 4.953 to 4.949 Å and the b dimension decreases from 9.951 Å to 9.906 Å when the aging time increases from 6 days to 42 days for 9.09 mol% Al-substituted goethite. A sample with 9.09 mol% Al substitution in Al-substituted goethite was prepared by a rapid co-precipitation method. In the sample, 13.45 mol%, 12.31 mol% and 5.85 mol% Al substitution with a crystal size of 163, 131, and 45 nm are observed as shown in the TEM images and EDS. The crystal size of goethite is positively related to the degree of Al substitution according to the TEM images and EDS results. Thus, this methodology is proved to be effective to distinguish the morphology of goethite and Al substituted goethite.
Resumo:
Current diagnostic methods for assessing the severity of articular cartilage degenerative conditions, such as osteoarthritis, are inadequate. There is also a lack of techniques that can be used for real-time evaluation of the tissue during surgery to inform treatment decision and eliminate subjectivity. This book, derived from Dr Afara’s doctoral research, presents a scientific framework that is based on near infrared (NIR) spectroscopy for facilitating the non-destructive evaluation of articular cartilage health relative to its structural, functional, and mechanical properties. This development is a component of the ongoing research on advanced endoscopic diagnostic techniques in the Articular Cartilage Biomechanics Research Laboratory of Professor Adekunle Oloyede at Queensland University of Technology (QUT), Brisbane Australia.
Resumo:
The GameFlow model strives to be a general model of player enjoyment, applicable to all game genres and platforms. Derived from a general set of heuristics for creating enjoyable player experiences, the GameFlow model has been widely used in evaluating many types of games, as well as non-game applications. However, we recognize that more specific, low-level, and implementable criteria are potentially more useful for designing and evaluating video games. Consequently, the research reported in this paper aims to provide detailed heuristics for designing and evaluating one specific game genre, real-time strategy games. In order to develop these heuristics, we conducted a grounded theoretical analysis on a set of professional game reviews and structured the resulting heuristics using the GameFlow model. The resulting 165 heuristics for designing and evaluating real-time strategy games are presented and discussed in this paper.
Resumo:
Internet services are important part of daily activities for most of us. These services come with sophisticated authentication requirements which may not be handled by average Internet users. The management of secure passwords for example creates an extra overhead which is often neglected due to usability reasons. Furthermore, password-based approaches are applicable only for initial logins and do not protect against unlocked workstation attacks. In this paper, we provide a non-intrusive identity verification scheme based on behavior biometrics where keystroke dynamics based-on free-text is used continuously for verifying the identity of a user in real-time. We improved existing keystroke dynamics based verification schemes in four aspects. First, we improve the scalability where we use a constant number of users instead of whole user space to verify the identity of target user. Second, we provide an adaptive user model which enables our solution to take the change of user behavior into consideration in verification decision. Next, we identify a new distance measure which enables us to verify identity of a user with shorter text. Fourth, we decrease the number of false results. Our solution is evaluated on a data set which we have collected from users while they were interacting with their mail-boxes during their daily activities.
Resumo:
This paper presents a methodology for real-time estimation of exit movement-specific average travel time on urban routes by integrating real-time cumulative plots, probe vehicles, and historic cumulative plots. Two approaches, component based and extreme based, are discussed for route travel time estimation. The methodology is tested with simulation and is validated with real data from Lucerne, Switzerland, that demonstrate its potential for accurate estimation. Both approaches provide similar results. The component-based approach is more reliable, with a greater chance of obtaining a probe vehicle in each interval, although additional data from each component is required. The extreme-based approach is simple and requires only data from upstream and downstream of the route, but the chances of obtaining a probe that traverses the entire route might be low. The performance of the methodology is also compared with a probe-only method. The proposed methodology requires only a few probes for accurate estimation; the probe-only method requires significantly more probes.
Resumo:
This article proposes an approach for real-time monitoring of risks in executable business process models. The approach considers risks in all phases of the business process management lifecycle, from process design, where risks are defined on top of process models, through to process diagnosis, where risks are detected during process execution. The approach has been realized via a distributed, sensor-based architecture. At design-time, sensors are defined to specify risk conditions which when fulfilled, are a likely indicator of negative process states (faults) to eventuate. Both historical and current process execution data can be used to compose such conditions. At run-time, each sensor independently notifies a sensor manager when a risk is detected. In turn, the sensor manager interacts with the monitoring component of a business process management system to prompt the results to process administrators who may take remedial actions. The proposed architecture has been implemented on top of the YAWL system, and evaluated through performance measurements and usability tests with students. The results show that risk conditions can be computed efficiently and that the approach is perceived as useful by the participants in the tests.