929 resultados para dynamic load balancing
Resumo:
This paper discusses the issue of sensing and control for stabilizing a swinging load. Our work has focused in particular on the dragline as used for overburden stripping in open-pit coal mining, but many of the principles would also be applicable to construction cranes. Results obtained from experimental work on a full-scale production dragline are presented.
Resumo:
Cold-formed steel members have many advantages over hot-rolled steel members. However, they are susceptible to various buckling modes at stresses below the yield stress of the member because of their relatively high width-to-thickness ratio. Web crippling is a form of localized failure mode that can occur when the members are subjected to transverse high concentrated loadings and/or reactions. The four common loading conditions are the end-one-flange (EOF), interior-one-flange (IOF), end-two-flange (ETF) and interior-two-flange (ITF) loadings. Recently a test method has been proposed by AISI to obtain the web crippling capacities under these four loading conditions. Using this test method 42 tests were conducted in this research to investigate the web crippling behaviour and strengths of unlipped channels with stocky webs under ETF and ITF cases. DuraGal sections having a nominal yield stress of 450 MPa were tested with different web slenderness and bearing lengths. The flanges of these channel sections were not fastened to the supports. In this research the suitability of the currently available design rules for unlipped channels subject to web crippling was investigated, and suitable modifications were proposed where necessary. In addition to this, a new design rule was proposed based on the direct strength method to predict the web crippling capacities of tested beams. This paper presents the details of this experimental study and the results.
Resumo:
One of the objectives of this study was to evaluate soil testing equipment based on its capability of measuring in-place stiffness or modulus values. As design criteria transition from empirical to mechanistic-empirical, soil test methods and equipment that measure properties such as stiffness and modulus and how they relate to Florida materials are needed. Requirements for the selected equipment are that they be portable, cost effective, reliable, a ccurate, and repeatable. A second objective is that the selected equipment measures soil properties without the use of nuclear materials.The current device used to measure soil compaction is the nuclear density gauge (NDG). Equipment evaluated in this research included lightweight deflectometers (LWD) from different manufacturers, a dynamic cone penetrometer (DCP), a GeoGauge, a Clegg impact soil tester (CIST), a Briaud compaction device (BCD), and a seismic pavement analyzer (SPA). Evaluations were conducted over ranges of measured densities and moistures.Testing (Phases I and II) was conducted in a test box and test pits. Phase III testing was conducted on materials found on five construction projects located in the Jacksonville, Florida, area. Phase I analyses determined that the GeoGauge had the lowest overall coefficient of variance (COV). In ascending order of COV were the accelerometer-type LWD, the geophone-type LWD, the DCP, the BCD, and the SPA which had the highest overall COV. As a result, the BCD and the SPA were excluded from Phase II testing.In Phase II, measurements obtained from the selected equipment were compared to the modulus values obtained by the static plate load test (PLT), the resilient modulus (MR) from laboratory testing, and the NDG measurements. To minimize soil and moisture content variability, the single spot testing sequence was developed. At each location, test results obtained from the portable equipment under evaluation were compared to the values from adjacent NDG, PLT, and laboratory MR measurements. Correlations were developed through statistical analysis. Target values were developed for various soils for verification on similar soils that were field tested in Phase III. The single spot testing sequence also was employed in Phase III, field testing performed on A-3 and A-2-4 embankments, limerock-stabilized subgrade, limerock base, and graded aggregate base found on Florida Department of Transportation construction projects. The Phase II and Phase III results provided potential trend information for future research—specifically, data collection for in-depth statistical analysis for correlations with the laboratory MR for specific soil types under specific moisture conditions. With the collection of enough data, stronger relationships could be expected between measurements from the portable equipment and the MR values. Based on the statistical analyses and the experience gained from extensive use of the equipment, the combination of the DCP and the LWD was selected for in-place soil testing for compaction control acceptance. Test methods and developmental specifications were written for the DCP and the LWD. The developmental specifications include target values for the compaction control of embankment, subgrade, and base materials.
Resumo:
The kaolinite (Kaol) intercalated with potassium acetate (Ac) was prepared and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry. Molecular dynamic simulation was performed to investigate the structure of Kaol–Ac intercalation complex and the hydrogen bonds between Kaol and intercalated Ac andwater using INTERFACE forcefield. The acetate anions andwater arranged in a bilayer structure in the interlayer space of Kaol. The potassium cations distributed in the interlayer space and strongly coordinated with acetate anions aswell aswater rather than keyed into the ditrigonal holes of tetrahedral surface of Kaol. Strong hydrogen bonds formed between the hydrogen atoms of hydroxyl on the octahedral surface and oxygen atoms of both acetate anions and water. The acetate anions andwater also weakly bonded hydrogen to the silica tetrahedral surface through their hydrogen atoms with the oxygen atoms of silica tetrahedral surface.
Resumo:
Thin profiled steel roof sheeting and battens are increasingly used in the construction of roofing systems of residential, commercial, industrial and farm buildings in Australia. The critical load combination of external wind suction and internal wind pressures that occur during high wind events such as thunderstorms and tropical cylcones often dislocate the roofing systems partially or even completely due to premature roof connection failures. Past wind damage investigations have shown that roof sheeting failures occured at their screw connections to battens. In most of these cases, the screw fastener head pulled through the thin roof sheeting whilst the screw fasteners also pulled out from the battens. Research studis undertaken on the roof sheeting to batten connection failures have improved this situation. However, the batten to rafter or truss connections have not been investigated adequately. Failure of these connections can cause the failure of the entire roof structure as observed during the recent high wind events. Therefore a detailed experimental study consisting of both small scale and full scale tests has been undertaken to investigate the steel roof batten pull-through failures in relation to many critical parameters such as steel batten geometry, thickness and grade, screw fastener head sizes and screw tightening. This paper presents the details of this experimental study and the pull-through failure load results obtained from them. Finally it discusses the development of suitable design rules that can be used to determine the pull-through connection capacities of thin steel roof battens under wind uplift loads.
Resumo:
Intelligent Transport Systems (ITS) have the potential to substantially reduce the number of crashes caused by human errors at railway levels crossings. However, such systems could overwhelm drivers, generate different types of driver errors and have negative effects on safety at level crossing. The literature shows an increasing interest for new ITS for increasing driver situational awareness at level crossings, as well as evaluations of such new systems on compliance. To our knowledge, the potential negative effects of such technologies have not been comprehensively evaluated yet. This study aimed at assessing the effect of different ITS interventions, designed to enhance driver behaviour at railway crossings, on driver’s cognitive loads. Fifty eight participants took part in a driving simulator study in which three ITS devices were tested: an in-vehicle visual ITS, an in-vehicle audio ITS, and an on-road valet system. Driver cognitive load was objectively and subjectively assessed for each ITS intervention. Objective data were collected from a heart rate monitor and an eye tracker, while subjective data was collected with the NASA-TLX questionnaire. Overall, results indicated that the three trialled technologies did not result in significant changes in cognitive load while approaching crossings.
Resumo:
Cycloidal drives are compact, high-ratio gear transmission systems used in a wide range of mechanical applications from conveyor drives to articulated robots. This research hypothesises that these drives can be successfully applied in dynamic loading situations and thereby focuses on the understanding of differences between static and dynamic loading conditions where load varies with time. New methods of studying the behaviour of these drives under static and dynamic loading circumstances were developed, leading to novel understanding and knowledge. A new model was developed to facilitate research and development on Cycloidal drives with potential benefits for manufacturing, robotics and mechanical-process-industries worldwide.
Resumo:
The environment moderates behaviour using a subtle language of ‘affordances’ and ‘behaviour-settings’. Affordances are environmental offerings. They are objects that demand action; a cliff demands a leap and binoculars demand a peek. Behaviour-settings are ‘places;’ spaces encoded with expectations and meanings. Behaviour-settings work the opposite way to affordances; they demand inhibition; an introspective demeanour in a church or when under surveillance. Most affordances and behaviour-settings are designed, and as such, designers are effectively predicting brain reactions. • Affordances are nested within, and moderated by behaviour-settings. Both trigger automatic neural responses (excitation and inhibition). These, for the best part cancel each other out. This balancing enables object recognition and allows choice about what action should be taken (if any). But when excitation exceeds inhibition, instinctive action will automatically commence. In positive circumstances this may mean laughter or a smile. In negative circumstances, fleeing, screaming or other panic responses are likely. People with poor frontal function, due to immaturity (childhood or developmental disorders) or due to hypofrontality (schizophrenia, brain damage or dementia) have a reduced capacity to balance excitatory and inhibitory impulses. For these people, environmental behavioural demands increase with the decline of frontal brain function. • The world around us is not only encoded with symbols and sensory information. Opportunities and restrictions work on a much more primal level. Person/space interactions constantly take place at a molecular scale. Every space we enter has its own special dynamic, where individualism vies for supremacy between the opposing forces of affordance-related excitation and the inhibition intrinsic to behaviour-settings. And in this context, even a small change–the installation of a CCTV camera can turn a circus to a prison. • This paper draws on cutting-edge neurological theory to understand the psychological determinates of the everyday experience of the designed environment.
Resumo:
This paper explores novel driving experiences that make use of gamification and augmented reality in the car. We discuss our design considerations, which are grounded in road safety psychology and video game design theory. We aim to address the tension between safe driving practices and player engagement. Specifically, we propose a holistic, iterative thinking process inspired by game design cognition and share our insights generated through the application of this process. We present preliminary game concepts that blend digital components with physical elements from the driving environment. We further highlight how this design process helped us to iteratively evolve these concepts towards being safer while maintaining fun. These insights and game design cognition itself will be useful to the AutomotiveUI community investigating similar novel driving experiences.
Resumo:
There is an increasing demand for Unmanned Aerial Systems (UAS) to carry suspended loads as this can provide significant benefits to several applications in agriculture, law enforcement and construction. The load impact on the underlying system dynamics should not be neglected as significant feedback forces may be induced on the vehicle during certain flight manoeuvres. The constant variation in operating point induced by the slung load also causes conventional controllers to demand increased control effort. Much research has focused on standard multi-rotor position and attitude control with and without a slung load. However, predictive control schemes, such as Nonlinear Model Predictive Control (NMPC), have not yet been fully explored. To this end, we present a novel controller for safe and precise operation of multi-rotors with heavy slung load in three dimensions. The paper describes a System Dynamics and Control Simulation Toolbox for use with MATLAB/SIMULINK which includes a detailed simulation of the multi-rotor and slung load as well as a predictive controller to manage the nonlinear dynamics whilst accounting for system constraints. It is demonstrated that the controller simultaneously tracks specified waypoints and actively damps large slung load oscillations. A linear-quadratic regulator (LQR) is derived and control performance is compared. Results show the improved performance of the predictive controller for a larger flight envelope, including aggressive manoeuvres and large slung load displacements. The computational cost remains relatively small, amenable to practical implementations.
Resumo:
Purpose To test the effectiveness of static and dynamic orthoses using them as an exclusive treatment for proximal interphalangeal (PIP) joint flexion contracture compared with other hand therapy conservative treatments described in the literature. Methods 60 patients who used orthoses were compared with a control group that received other hand therapy treatments. Clinical assessments were measured before the experiment and 3 months after and included active PIP joint extension and function. Results A significant improvement in the extension active range of motion at the PIP joint in the second measurement was found in both groups, but it was significantly greater in the experimental group. Improvement in function (Disabilities of the Arm, Shoulder, and Hand score) between the first and second assessment was similar in the control and experimental groups. Conclusions Using night progressive static and daily dynamic orthoses as an exclusive treatment during the proliferative phase led to significant improvements in the PIP joint active extension, but the improvement did not correlate with increased function as perceived by the patient.
Resumo:
Pharmacological MRI (phMRI) techniques can be used to monitor the neurophysiological effects of central nervous system (CNS) active drugs. In this study, we investigated whether dynamic susceptibility contrast (DSC) perfusion imaging employing the use of superparamagnetic iron oxide nanoparticles (Resovist) could be used to measure hemodynamic response to d-amphetamine challenge in human subjects at both 1.5 and 4 T. Significant changes in cerebral blood flow (CBF) were found in focal regions associated with the nigrostriatal circuit and mesolimbic and mesocortical dopaminergic pathways. More significant CBF responses were found at higher field strength, mainly within striatal structures. The results from this study indicate that DSC perfusion imaging using Resovist can be used to assess the efficacy of CNS-active drugs and may play a role in the development of novel psychiatric therapies at the preclinical level. © 2005 Wiley-Liss, Inc.
Resumo:
In this study we present a combinatorial optimization method based on particle swarm optimization and local search algorithm on the multi-robot search system. Under this method, in order to create a balance between exploration and exploitation and guarantee the global convergence, at each iteration step if the distance between target and the robot become less than specific measure then a local search algorithm is performed. The local search encourages the particle to explore the local region beyond to reach the target in lesser search time. Experimental results obtained in a simulated environment show that biological and sociological inspiration could be useful to meet the challenges of robotic applications that can be described as optimization problems.
Resumo:
Recent research on hollow flange beams has led to the development of an innovative rectangular hollow flange channel beam (RHFCB) for use in floor systems. The new RHFCB is a mono-symmetric structural section made by intermittently rivet fastening two torsionally rigid closed rectangular hollow flanges to a web plate element, which allows section optimisation by selecting appropriate combinations of web and flange widths and thicknesses. However, the current design rules for cold-formed steel sections are not directly applicable to rivet fastened RHFCBs. To date, no investigation has been conducted on their web crippling behaviour and strengths. Hence an experimental study was conducted to investigate the web crippling behaviour and capacities of rivet fastened RHFCBs under End Two Flange (ETF) and Interior Two Flange (ITF) load cases. It showed that RHFCBs failed by web crippling, flange crushing and their combinations. Comparison of ultimate web crippling capacities with the predictions from the design equations in AS/NZS 4600 and AISI S100 showed that the current design equations are unconservative for rivet fastened RHFCB sections under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of rivet fastened RHFCBs. These equations can also be used to predict the capacities of RHFCBs subject to combined web crippling and flange crushing conservatively. However, new capacity equations were proposed in the case of flange crushing failures that occurred in thinner flanges with smaller bearing lengths. This paper presents the details of this web crippling experimental study of RHFCB sections and the results.