921 resultados para denaturing high-performance liquid chromatography (DHPLC) sequencing
Resumo:
Here, we described the expression and characterization of the recombinant toxin LTx2, which was previously isolated from the venomous cDNA library of a Brazilian spider, Lasiodora sp. (Mygalomorphae, Theraphosidae). The recombinant toxin found in the soluble and insoluble fractions was purified by reverse phase high-performance liquid chromatography (HPLC). Ca2+ imaging analysis revealed that the recombinant LTx2 acts on calcium channels of BC3H1 cells, blocking L-type calcium channels. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The isoprenoid metabolic pathway in protozoa of the Leishmania genus exhibits distinctive characteristics. These parasites, as well as other members of the Trypanosomatidae family, synthesize ergosterol, instead of cholesterol, as the main membrane sterol lipid. Leishmania has been shown to utilize leucine, instead of acetate as the main precursor for sterol biosynthesis. While mammalian dolichols are molecules containing 15-23 isoprene units, Leishmania amazonensis promastigotes synthesize dolichol of 11 and 12 units. In this paper, we show that the intracellular stages of L. amazonensis, amastigotes, synthesize mainly polyprenols of 9 isoprene units, instead of dolichol. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Aims: In our previous work, we reported that the insulin potentiating effect on melatonin synthesis is regulated by a post-transcriptional mechanism. However, the major proteins of the insulin signaling pathway (ISP) and the possible pathway component recruited on the potentiating effect of insulin had not been characterized. A second question raised was whether windows of sensitivity to insulin exist in the pineal gland due to insulin rhythmic secretion pattern. Main methods: Melatonin content from norepinephrine(NE)-synchronized pineal gland cultures was quantified by high performance liquid chromatography with electrochemical detection and arylalkylamine-N-acetyltransferase (AANAT) activity was assayed by radiometry. Immunoblotting and immunoprecipitation techniques were performed to establish the ISP proteins expression and the formation of 14-3-3: AANAT complex, respectively. Key findings: The temporal insulin susceptibility protocol revealed two periods of insulin potentiating effect, one at the beginning and another one at the end of the in vitro induced ""night"". In some Timed-insulin Stimulation (TSs), insulin also promoted a reduction on melatonin synthesis, showing its dual action in cultured pineal glands. The major ISP components, such as IR beta, IGF-1R, IRS-1, IRS-2 and PI3K(p85), as well tyrosine phosphorylation of pp85 were characterized within pineal glands. Insulin is not involved in the 14-3-3:AANAT complex formation. The blockage of PI3K by LY 294002 reduced melatonin synthesis and AANAT activity. Significance: The present study demonstrated windows of differential insulin sensitivity, a functional ISP and the PI3K-dependent insulin potentiating effect on NE-mediated melatonin synthesis, supporting the hypothesis of a crosstalk between noradrenergic and insulin pathways in the rat pineal gland. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
A robust, direct, rapid and non-destructive X-ray diffraction crystallography method to detect the polyprenylated benzophenones 7-epi-clusianone (1) and guttiferone A (2) in extracts from Garcinia brasiliensis is presented. Powder samples of benzophenones 1 and 2, dried hexane extracts from G. brasiliensis seeds and fruit`s pericarp, and the dried ethanolic extract from G. brasiliensis seeds were unambiguously characterized by powder X-ray diffractometry. The calculated X-ray diffraction peaks from crystal structures of analytes 1 and 2, previously determined by single-crystal X-ray diffraction technique, were overlaid to those of the experimental powder diffractograms, providing a practical identification of these compounds in the analyzed material and confirming the pure contents of the powder samples. Using the X-ray diffraction crystallography method, the studied polyprenylated benzophenones were selectively and simultaneously detected in the extracts which were mounted directly on sample holder. In addition, reference materials of the analytes were not required for analyses since the crystal structures of the compounds are known. High performance liquid chromatography analyses also were comparatively carried out to quantify the analytes in the same plant extracts showing to be in agreement with X-ray diffraction crystallography method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Ultraviolet radiation is one of the most deleterious forms of radiation to terrestrial organisms and is involved in formation of mutagenic pyrimidine dimers and oxidized nucleotides. The biflavonoid fraction (BFF), extracted from needles of Araucaria angustifolia was capable of protecting calf thymus DNA from damage induced by UV radiation. This occurred through prevention of cyclobutane thymine dimer and 8-oxo-7,8-dihydro-2`-deoxyguanosine formation, this being quantified by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) in a multiple reaction monitoring mode (MRM) and by HPLC-coulometric detection, respectively. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In mammalian membranes, cholesterol is concentrated in lipid rafts. The generation of cholesterol hydroperoxides (ChOOHs) and their decomposition products induces various types of cell damage. The decomposition of some organic hydroperoxides into peroxyl radicals is known to be a potential source of singlet molecular oxygen [O(2) ((1)Delta(g))] in biological systems. We report herein on evidence of the generation of O(2) ((1)Delta(g)) from ChOOH isomers in solution or in liposomes containing ChOOHs, which involves a cyclic mechanism from a linear tetraoxide intermediate originally proposed by Russell. Characteristic light emission at 1270 nm, corresponding to O(2) ((1)Delta(g)) monomolecular decay, was observed for each ChOOH isomer or in liposomes containing ChOOHs. Moreover, the presence of O(2) ((1)Delta(g)) was unequivocally demonstrated using the direct spectral characterization of near-infrared light emission. Using (18)O-labeled cholesterol hydroperoxide (Ch(18)O(18)OH), we observed the formation of (18)O-labeled O(2) ((1)Delta(g)) [(18)O(2) ((1)Delta(g))] by the chemical trapping of (18)O(2) ((1)Delta(g)) with 9,10-diphenylanthracene (DPA) and detected the corresponding (18)O-labeled DPA endoperoxide (DPA(18)O(18)O) and the (18)O-labeled products of the Russell mechanism using high-performance liquid chromatography coupled to tandem mass spectrometry. Photoemission properties and chemical trapping clearly demonstrate that the decomposition of Ch(18)O(18)OH generates (18)O(2) ((1)Delta(g)), which is consistent with the Russell mechanism and points to the involvement of O(2) ((1)Delta(g)) in cholesterol hydroperoxide-mediated cytotoxicity.
Resumo:
Oxidation of cholesterol (Ch) by a variety of reactive oxygen species gives rise mainly to hydroperoxides and aldehydes. Despite the growing interest in Ch-oxidized products, the detection and characterization of these products is still a matter of concern. In this work, the main Ch-oxidized products, namely, 3 beta-hydroxycholest-5-ene-7 alpha-hydroperoxide (7 alpha-OOH), 3 beta-5 alpha-cholest-6-ene-5-hydroperoxide (5 alpha-OOH), 3 beta-hydroxycholest-4-ene-6 alpha-hydroperoxide (6 alpha-OOH), 3 beta-hydroxycholest-4-ene-6 beta-hydroperoxide (6 beta-OOH), and 3 beta-hydroxy-5 beta-hydroxy-B-norcholestane-6 beta-carboxaldehyde (ChAld), were detected in the same analysis using high-performance liquid chromatography (HPLC) coupled to dopant assisted atmospheric pressure photoionization tandem mass spectrometry. The use of selected reaction monitoring mode (SRM) allowed a sensitive detection of each oxidized product, while the enhanced product ion mode (EPI) helped to improve the confidence of the analyses. Isotopic labeling experiments enabled one to elucidate mechanistic features during fragmentation processes. The characteristic fragmentation pattern of Ch-oxidized products is the consecutive loss of 1120 molecules, yielding cationic fragments at m/z 401, 383, and 365. Homolytic scissions of the peroxide bond are also seen. With (18)O-labeling approach, it was possible to establish a fragmentation order for each isomer. The SRM transitions ratio along with EPI and (18)O-labeled experiments give detailed information about differences for water elimination, allowing a proper discrimination between the isomers:Phis is of special interest considering the emerging role of Ch-oxidized products in the development of diseases.
Resumo:
Powder mixtures (1:1) of tibolone polymorphic forms I (monoclinic) and II (triclinic) and excipients have been prepared and compacted. The samples were stored at 50 degrees C and 90% RH for one month and subsequently were evaluated using differential scanning calorimetry (DSC) and high-performance liquid chromatography (HPLC). The results indicate that during the compaction, the applied pressure reduced the chemical stability of tibolone in both polymorph forms. The triclinic form was more chemically unstable, both pure and in contact with excipients, than the monoclinic form. Lactose monohydrate was shown to reduce chemical degradation for both forms. Ascorbyl palmitate was shown to affect the tibolone stability differently depending on the polymorphic form used.
Resumo:
This paper describes the development and evaluation of a sequential injection method to automate the determination of methyl parathion by square wave adsorptive cathodic stripping voltammetry exploiting the concept of monosegmented flow analysis to perform in-line sample conditioning and standard addition. Accumulation and stripping steps are made in the sample medium conditioned with 40 mmol L-1 Britton-Robinson buffer (pH 10) in 0.25 mol L-1 NaNO3. The homogenized mixture is injected at a flow rate of 10 mu Ls(-1) toward the flow cell, which is adapted to the capillary of a hanging drop mercury electrode. After a suitable deposition time, the flow is stopped and the potential is scanned from -0.3 to -1.0 V versus Ag/AgCl at frequency of 250 Hz and pulse height of 25 mV The linear dynamic range is observed for methyl parathion concentrations between 0.010 and 0.50 mgL(-1), with detection and quantification limits of 2 and 7 mu gL(-1), respectively. The sampling throughput is 25 h(-1) if the in line standard addition and sample conditioning protocols are followed, but this frequency can be increased up to 61 h(-1) if the sample is conditioned off-line and quantified using an external calibration curve. The method was applied for determination of methyl parathion in spiked water samples and the accuracy was evaluated either by comparison to high performance liquid chromatography with UV detection, or by the recovery percentages. Although no evidences of statistically significant differences were observed between the expected and obtained concentrations, because of the susceptibility of the method to interference by other pesticides (e.g., parathion, dichlorvos) and natural organic matter (e.g., fulvic and humic acids), isolation of the analyte may be required when more complex sample matrices are encountered. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the use of a dental amalgam electrode (DAE) to evaluate the electrochemical behaviour and to develop an electroanalytical procedure for determination of diquat herbicide in natural water and potato samples. The work was based on the square wave voltammetry responses of diquat, which presented two well-defined and reversible reduction peaks, at -0.56 V (peak 1) and -1.00V (peak 2). The experimental and voltammetric parameters were optimised, and the analytical curves were constructed and compared to similar curves performed by high performance liquid chromatography coupled to ultraviolet-visible spectrophotometric detector (HPLC/UV-vis). The responses were directly proportional to diquat concentration in a large interval of concentration, and the calculated detection limits were very similar, around 10 mu g L(-1) (10 ppb) for voltammetric and chromatographic experiments. These values were lower than the maximum residue limit established for natural water by the Brazilian Environmental Agency. The recovery percentages in pure electrolyte, natural water and potato samples showed values from 70% to 130%, demonstrating that the voltammetric methodology proposed is suitable for determining any contamination by diquat in different samples, minimising the toxic residues due to the use of liquid mercury or the adsorptive process relative to use of other solid surfaces. (C) 2009 Published by Elsevier B.V.
Resumo:
Cellulose cassava bagasse nanofibrils (CBN) were directly extracted from a by-product of the cassava starch (CS) industry, viz. the cassava bagasse (CB), The morphological structure of the ensuing nanoparticles was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), presence of other components such as sugars by high performance liquid chromatography (HPLC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) experiments. The resulting nanofibrils display a relatively low crystallinity and were found to be around 2-11 nm thick and 360-1700 nm long. These nanofibrils were used as reinforcing nanoparticles in a thermoplastic cassava starch matrix plasticized using either glycerol or a mixture of glycerol/sorbitol (1:1) as plasticizer. Nanocomposite films were prepared by a melting process. The reinforcing effect of the filler evaluated by dynamical mechanical tests (DMA) and tensile tests was found to depend on the nature of the plasticizer employed. Thus, for the glycerol-plasticized matrix-based composites, it was limited especially due to additional plasticization by sugars originating from starch hydrolysis during the acid extraction. This effect was evidenced by the reduction of glass vitreous temperature of starch after the incorporation of nanofibrils in TPSG and by the increase of elongation at break in tensile test. On the other hand, for glycerol/sorbitol plasticized nanocomposites the transcrystallization of amylopectin in nanofibrils surface hindered good performances of CBN as reinforcing agent for thermoplastic cassava starch. The incorporation of cassava bagasse cellulose nanofibrils in the thermoplastic starch matrices has resulted in a decrease of its hydrophilic character especially for glycerol plasticized sample. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Glycerol, cassava wastewater (CW), waste cooking oil and CW with waste frying oils were evaluated as alternative low-cost carbon substrates for the production of rhamnolipids and polyhydroxyalkanoates (PHAs) by various Pseudomonas aeruginosa strains. The polymers and surfactants produced were characterized by gas chromatography-mass spectrophotometry (MS) and by high-performance liquid chromatography-MS, and their composition was found to vary with the carbon source and the strain used in the fermentation. The best overall production of rhamnolipids and PHAs was obtained with CW with frying oil as the carbon source, with PHA production corresponding to 39% of the cell dry weight and rhamnolipid production being 660 mg l(-1). Under these conditions, the surface tension of the culture decreased to 30 mN m(-1), and the critical micelle concentration was 26.5 mg l(-1). It would appear that CW with frying oil has the highest potential as an alternative substrate, and its use may contribute to a reduction in the overall environmental impact generated by discarding such residues.
Resumo:
Boron-doped diamond (BDD) films grown on the titanium substrate were used to study the electrochemical degradation of Reactive Orange (RO) 16 Dye. The films were produced by hot filament chemical vapor deposition (HFCVD) technique using two different boron concentrations. The growth parameters were controlled to obtain heavily doped diamond films. They were named as E1 and E2 electrodes, with acceptor concentrations of 4.0 and 8.0 x 10(21) atoms cm(-3), respectively. The boron levels were evaluated from Mott-Schottky plots also corroborated by Raman`s spectra, which characterized the film quality as well as its physical property. Scanning Electron Microscopy showed well-defined microcrystalline grain morphologies with crystal orientation mixtures of (1 1 1) and (1 00). The electrode efficiencies were studied from the advanced oxidation process (AOP) to degrade electrochemically the Reactive Orange 16 azo-dye (RO16). The results were analyzed by UV/VIS spectroscopy, total organic carbon (TOC) and high-performance liquid chromatography (HPLC) techniques. From UV/VIS spectra the highest doped electrode (E2) showed the best efficiency for both, the aromaticity reduction and the azo group fracture. These tendencies were confirmed by the TOC and chromatographic measurements. Besides, the results showed a direct relationship among the BDD morphology, physical property, and its performance during the degradation process. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A method is reported for the quantification of isoorientin (using a standard addition method) and total flavonoids (expressed as rutin, using the external standard method) in passion fruit pulp (Passiflora edulis Sims f. flavicarpa Degener, Passifloraceae). Extraction of flavonoids was optimized by experimental design methodology, and quantitative analysis was performed by high-performance liquid chromatography with photo-diode array detection (HPLC-UV/DAD). The method was developed and validated according to ICH requirements for specificity, linearity, accuracy, precision (repeatability and intermediate precision). LOD and LOQ. Rutin was chosen as standard for the quantification of total flavonoids in order to propose a HPLC method feasible for routine analysis of the flavonoids in the passion fruit pulp. The passion fruit pulp contained 16.226 +/- 0.050 mg L(-1) of isoorientin and 158.037 +/- 0.602 mg L(-1) of total flavonoid, suggesting that P. edulis fruits may be comparable with other flavonoid food sources such as orange juice or sugarcane juice. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Alachlor has been widely used in agriculture all over the world. It is suggested that it may be a carcinogen and an environmental estrogen. The aim of this work was to verify the degradation the alachlor by gamma radiation. Gamma radiation from (60)Co was used to degrade the alachlor herbicide in water and methanol solution. The alachlor in water and alcohol solution in the concentration of 100 mgL(-1) was irradiated with doses of 0.25-50 kGy, at dose rate 5-6 and 2.7 kGyh(-1). High performance liquid chromatography was used as an analytical technique to determine the degradation rate of herbicide studied.