839 resultados para computer-based teaching
Resumo:
The paper focuses on taking advantage of large amounts of data that are systematically stored in plants (by means of SCADA systems), but not exploited enough in order to achieve supervisory goals (fault detection, diagnosis and reconfiguration). The methodology of case base reasoning (CBR) is proposed to perform supervisory tasks in industrial processes by re-using the stored data. The goal is to take advantage of experiences, registered in a suitable structure as cam, avoiding the tedious task of knowledge acquisition and representation needed by other reasoning techniques as expert systems. An outlook of CBR terminology and basic concepts are presented. The adaptation of CBR in performing expert supervisory tasks, taking into account the particularities and difficulties derived from dynamic systems, is discussed. A special interest is focused in proposing a general case definition suitable for supervisory tasks. Finally, this structure and the whole methodology is tested in a application example for monitoring a real drier chamber
Resumo:
Image registration is an important component of image analysis used to align two or more images. In this paper, we present a new framework for image registration based on compression. The basic idea underlying our approach is the conjecture that two images are correctly registered when we can maximally compress one image given the information in the other. The contribution of this paper is twofold. First, we show that the image registration process can be dealt with from the perspective of a compression problem. Second, we demonstrate that the similarity metric, introduced by Li et al., performs well in image registration. Two different versions of the similarity metric have been used: the Kolmogorov version, computed using standard real-world compressors, and the Shannon version, calculated from an estimation of the entropy rate of the images
Resumo:
A Web-based tool developed to automatically correct relational database schemas is presented. This tool has been integrated into a more general e-learning platform and is used to reinforce teaching and learning on database courses. This platform assigns to each student a set of database problems selected from a common repository. The student has to design a relational database schema and enter it into the system through a user friendly interface specifically designed for it. The correction tool corrects the design and shows detected errors. The student has the chance to correct them and send a new solution. These steps can be repeated as many times as required until a correct solution is obtained. Currently, this system is being used in different introductory database courses at the University of Girona with very promising results
Resumo:
Shape complexity has recently received attention from different fields, such as computer vision and psychology. In this paper, integral geometry and information theory tools are applied to quantify the shape complexity from two different perspectives: from the inside of the object, we evaluate its degree of structure or correlation between its surfaces (inner complexity), and from the outside, we compute its degree of interaction with the circumscribing sphere (outer complexity). Our shape complexity measures are based on the following two facts: uniformly distributed global lines crossing an object define a continuous information channel and the continuous mutual information of this channel is independent of the object discretisation and invariant to translations, rotations, and changes of scale. The measures introduced in this paper can be potentially used as shape descriptors for object recognition, image retrieval, object localisation, tumour analysis, and protein docking, among others
Resumo:
BACKGROUND Functional brain images such as Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been widely used to guide the clinicians in the Alzheimer's Disease (AD) diagnosis. However, the subjectivity involved in their evaluation has favoured the development of Computer Aided Diagnosis (CAD) Systems. METHODS It is proposed a novel combination of feature extraction techniques to improve the diagnosis of AD. Firstly, Regions of Interest (ROIs) are selected by means of a t-test carried out on 3D Normalised Mean Square Error (NMSE) features restricted to be located within a predefined brain activation mask. In order to address the small sample-size problem, the dimension of the feature space was further reduced by: Large Margin Nearest Neighbours using a rectangular matrix (LMNN-RECT), Principal Component Analysis (PCA) or Partial Least Squares (PLS) (the two latter also analysed with a LMNN transformation). Regarding the classifiers, kernel Support Vector Machines (SVMs) and LMNN using Euclidean, Mahalanobis and Energy-based metrics were compared. RESULTS Several experiments were conducted in order to evaluate the proposed LMNN-based feature extraction algorithms and its benefits as: i) linear transformation of the PLS or PCA reduced data, ii) feature reduction technique, and iii) classifier (with Euclidean, Mahalanobis or Energy-based methodology). The system was evaluated by means of k-fold cross-validation yielding accuracy, sensitivity and specificity values of 92.78%, 91.07% and 95.12% (for SPECT) and 90.67%, 88% and 93.33% (for PET), respectively, when a NMSE-PLS-LMNN feature extraction method was used in combination with a SVM classifier, thus outperforming recently reported baseline methods. CONCLUSIONS All the proposed methods turned out to be a valid solution for the presented problem. One of the advances is the robustness of the LMNN algorithm that not only provides higher separation rate between the classes but it also makes (in combination with NMSE and PLS) this rate variation more stable. In addition, their generalization ability is another advance since several experiments were performed on two image modalities (SPECT and PET).
Resumo:
Malaria is responsible for more deaths around the world than any other parasitic disease. Due to the emergence of strains that are resistant to the current chemotherapeutic antimalarial arsenal, the search for new antimalarial drugs remains urgent though hampered by a lack of knowledge regarding the molecular mechanisms of artemisinin resistance. Semisynthetic compounds derived from diterpenes from the medicinal plant Wedelia paludosawere tested in silico against the Plasmodium falciparumCa2+-ATPase, PfATP6. This protein was constructed by comparative modelling using the three-dimensional structure of a homologous protein, 1IWO, as a scaffold. Compound 21 showed the best docking scores, indicating a better interaction with PfATP6 than that of thapsigargin, the natural inhibitor. Inhibition of PfATP6 by diterpene compounds could promote a change in calcium homeostasis, leading to parasite death. These data suggest PfATP6 as a potential target for the antimalarial ent-kaurane diterpenes.
Resumo:
The system described herein represents the first example of a recommender system in digital ecosystems where agents negotiate services on behalf of small companies. The small companies compete not only with price or quality, but with a wider service-by-service composition by subcontracting with other companies. The final result of these offerings depends on negotiations at the scale of millions of small companies. This scale requires new platforms for supporting digital business ecosystems, as well as related services like open-id, trust management, monitors and recommenders. This is done in the Open Negotiation Environment (ONE), which is an open-source platform that allows agents, on behalf of small companies, to negotiate and use the ecosystem services, and enables the development of new agent technologies. The methods and tools of cyber engineering are necessary to build up Open Negotiation Environments that are stable, a basic condition for predictable business and reliable business environments. Aiming to build stable digital business ecosystems by means of improved collective intelligence, we introduce a model of negotiation style dynamics from the point of view of computational ecology. This model inspires an ecosystem monitor as well as a novel negotiation style recommender. The ecosystem monitor provides hints to the negotiation style recommender to achieve greater stability of an open negotiation environment in a digital business ecosystem. The greater stability provides the small companies with higher predictability, and therefore better business results. The negotiation style recommender is implemented with a simulated annealing algorithm at a constant temperature, and its impact is shown by applying it to a real case of an open negotiation environment populated by Italian companies
Resumo:
BACKGROUND Complicated pyelonephritis (cPN), a common cause of hospital admission, is still a poorly-understood entity given the difficulty involved in its correct definition. The aim of this study was to analyze the main epidemiological, clinical, and microbiological characteristics of cPN and its prognosis in a large cohort of patients with cPN. METHODS We conducted a prospective, observational study including 1325 consecutive patients older than 14 years diagnosed with cPN and admitted to a tertiary university hospital between 1997-2013. After analyzing the main demographic, clinical and microbiological data, covariates found to be associated with attributable mortality in univariate analysis were included in a multivariate logistic regression model. RESULTS Of the 1325 patients, 689 (52%) were men and 636 (48%) women; median age 63 years, interquartile range [IQR] (46.5-73). Nine hundred and forty patients (70.9%) had functional or structural abnormalities in the urinary tract, 215 (16.2%) were immunocompromised, 152 (11.5%) had undergone a previous urinary tract instrumentation, and 196 (14.8%) had a long-term bladder catheter, nephrostomy tube or ureteral catheter. Urine culture was positive in 813 (67.7%) of the 1251 patients in whom it was done, and in the 1032 patients who had a blood culture, 366 (34%) had bacteraemia. Escherichia coli was the causative agent in 615 episodes (67%), Klebsiella spp in 73 (7.9%) and Proteus ssp in 61 (6.6%). Fourteen point one percent of GNB isolates were ESBL producers. In total, 343 patients (25.9%) developed severe sepsis and 165 (12.5%) septic shock. Crude mortality was 6.5% and attributable mortality was 4.1%. Multivariate analysis showed that an age >75 years (OR 2.77; 95% CI, 1.35-5.68), immunosuppression (OR 3.14; 95% CI, 1.47-6.70), and septic shock (OR 58.49; 95% CI, 26.6-128.5) were independently associated with attributable mortality. CONCLUSIONS cPN generates a high morbidity and mortality and likely a great consumption of healthcare resources. This study highlights the factors directly associated with mortality, though further studies are needed in the near future aimed at identifying subgroups of low-risk patients susceptible to outpatient management.
Resumo:
Positron emission tomography is a functional imaging technique that allows the detection of the regional metabolic rate, and is often coupled with other morphological imaging technique such as computed tomography. The rationale for its use is based on the clearly demonstrated fact that functional changes in tumor processes happen before morphological changes. Its introduction to the clinical practice added a new dimension in conventional imaging techniques. This review presents the current and proposed indications of the use of positron emission/computed tomography for prostate, bladder and testes, and the potential role of this exam in radiotherapy planning.
Resumo:
This paper presents a pattern recognition method focused on paintings images. The purpose is construct a system able to recognize authors or art styles based on common elements of his work (here called patterns). The method is based on comparing images that contain the same or similar patterns. It uses different computer vision techniques, like SIFT and SURF, to describe the patterns in descriptors, K-Means to classify and simplify these descriptors, and RANSAC to determine and detect good results. The method are good to find patterns of known images but not so good if they are not.
Resumo:
Diagnosis of several neurological disorders is based on the detection of typical pathological patterns in the electroencephalogram (EEG). This is a time-consuming task requiring significant training and experience. Automatic detection of these EEG patterns would greatly assist in quantitative analysis and interpretation. We present a method, which allows automatic detection of epileptiform events and discrimination of them from eye blinks, and is based on features derived using a novel application of independent component analysis. The algorithm was trained and cross validated using seven EEGs with epileptiform activity. For epileptiform events with compensation for eyeblinks, the sensitivity was 65 +/- 22% at a specificity of 86 +/- 7% (mean +/- SD). With feature extraction by PCA or classification of raw data, specificity reduced to 76 and 74%, respectively, for the same sensitivity. On exactly the same data, the commercially available software Reveal had a maximum sensitivity of 30% and concurrent specificity of 77%. Our algorithm performed well at detecting epileptiform events in this preliminary test and offers a flexible tool that is intended to be generalized to the simultaneous classification of many waveforms in the EEG.
Resumo:
Black-box optimization problems (BBOP) are de ned as those optimization problems in which the objective function does not have an algebraic expression, but it is the output of a system (usually a computer program). This paper is focussed on BBOPs that arise in the eld of insurance, and more speci cally in reinsurance problems. In this area, the complexity of the models and assumptions considered to de ne the reinsurance rules and conditions produces hard black-box optimization problems, that must be solved in order to obtain the optimal output of the reinsurance. The application of traditional optimization approaches is not possible in BBOP, so new computational paradigms must be applied to solve these problems. In this paper we show the performance of two evolutionary-based techniques (Evolutionary Programming and Particle Swarm Optimization). We provide an analysis in three BBOP in reinsurance, where the evolutionary-based approaches exhibit an excellent behaviour, nding the optimal solution within a fraction of the computational cost used by inspection or enumeration methods.
Resumo:
Information and communication technologies pose accessibility problems to people with disabilities because its design fails to take into account their communication and usability requirements. The impossibility to access the services provided by these technologies creates a situation of exclusion that reduces the self-suficiency of disabled individuals and causes social isolation, which in turn diminishes their overall quality of life. Considering the importance of these technologies and services in our society, we have developed a pictogram-based Instant Messaging service for individuals with cognitive disabilities who have reading and writing problems. Along the paper we introduce and discuss the User Centred Design methodology that we have used to develop and evaluate the pictogram-based Instant Messaging service and client with individuals with cognitive disabilities taking into account their communication and usability requirements. From the results obtained in the evaluation process we can state that individuals with cognitive disabilities have been able to use the pictogram-based Instant Messaging service and client to communicate with their relatives and acquaintances, thus serving as a tool to help reducing their social and digital exclusion situation.
Resumo:
Après la votation fédérale demandant de prendre en compte les médecines complémentaires, un consensus a été recherché dans quatorze services et unités du Centre hospitalier universitaire vaudois (CHUV). Confrontés aux données de la littérature (Plus de 2000 publications en "Evidence-based complementary medicine" depuis 1998), les soignants étaient tous surpris par l'ampleur des résultats cliniques disponibles actuellement. Tous identifiaient un besoin en formation et en informations sur le sujet. Une prise de position officielle de l'institution était aussi souhaitée, instituant l'enseignement et la recherche sur les médecines complémentaires et assurant la production d'informations rigoureuses et pertinentes pour la clinique. [Abstract] While a popular vote supported a new article on complementary and alternative medicines (CAM) in the Swiss Constitution, this assessment in 14 wards of the University Hospital of Lausanne, Switzerland, attempted at answering the question: How can CAM use be better taken into account and patients informed with more rigor and respect for their choices? Confronted with a review of the literature (> 2000 publications in "Evidence-based cornplementary medicine" since 1998), respondents declared their ignorance of the clinical data presently available on CAM. All were in favour of more teaching and information on the subject, plus an official statement from the Hospital direction, ensuring production and diffusion of rigorous and cJinically significant information on CAM.
Resumo:
This paper introduces Collage, a high-level IMS-LD compliant authoring tool that is specialized for CSCL (Computer-Supported Collaborative Learning). Nowadays CSCL is a key trend in elearning since it highlights the importance of social interactions as an essential element of learning. CSCL is an interdisciplinary domain, which demands participatory design techniques that allow teachers to get directly involved in design activities. Developing CSCL designs using LD is a difficult task for teachers since LD is a complex technical specification and modelling collaborative characteristics can be tricky. Collage helps teachers in the process of creating their own potentially effective collaborative Learning Designs by reusing and customizing patterns, according to the requirements of a particular learning situation. These patterns, called Collaborative Learning Flow Patterns (CLFPs), represent best practices that are repetitively used by practitioners when structuring the flow of (collaborative) learning activities. An example of an LD that can be created using Collage is illustrated in the paper. Preliminary evaluation results show that teachers, with experience in CL but without LD knowledge, can successfully design real collaborative learning experiences using Collage.