878 resultados para coalbed natural gas
Resumo:
Summary: On June 22, 2001, the groundwork was laid for the construction of new electric generation in the state of Illinois when the Illinois Resource Development and Energy Act was signed. Overwhelmingly approved by the Illinois General Assembly, this broad-based $3.5 billion package is designed to reinvigorate the Illinois coal industry and to strengthen the state's ability to provide electricity to its citizens. The legislation (Public Act 92-0012) provides tax incentives and financial assistance to builders of new electric plants generating in excess of 400 megawatts that create Illinois coal-mining jobs, new and expanding coal mines, and natural gas-fired baseload electric plants with a capacity of 1,000 megawatts. The legislation also directs the the Illinois Environmental Protection Agency to explore the need for a state-level, multi-pollutant strategy to reduce emissions from coal-fired electric generating plants.
Resumo:
"Assistant Secretary for Policy and International Affairs, U.S. Department of Transportation; Assistant Secretary for Resource Applications, U.S. Department of Energy."
Resumo:
v.31 Ball clays -- v.32 Granites of Scotland -- v.33 Synopsis of the mineral resources of Scotland -- v.34 Rock wool -- v. 35 Limestones of Scotland -- v.36 Cambro-Ordovician limestones and dolomites of the Ord and Torran areas, SKye and the Kishorn area, Ross-Shire -- v.37 Limestones of Scotland : chemical analyses and petrography
Resumo:
Mode of access: Internet.
Resumo:
"Serial no. 95-134."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Australia is unique in terms of its geography, population distribution, and energy sources. It has an abundance of fossil fuel in the form of coal, natural gas, coal seam methane (CSM), oil, and a variety renewable energy sources that are under development. Unfortunately, most of the natural gas is located so far away from the main centres of population that it is more economic to ship the energy as LNG to neighboring countries. Electricity generation is the largest consumer of energy in Australia and accounts for around 50% of greenhouse gas emissions as 84% of electricity is produced from coal. Unless these emissions are curbed, there is a risk of increasing temperatures throughout the country and associated climatic instability. To address this, research is underway to develop coal gasification and processes for the capture and sequestration Of CO2. Alternative transport fuels such as biodiesel are being introduced to help reduce emissions from vehicles. The future role of hydrogen is being addressed in a national study commissioned this year by the federal government. Work at the University of Queensland is also addressing full-cycle analysis of hydrogen production, transport, storage, and utilization for both stationary and transport applications. There is a modest but growing amount of university research in fuel cells in Australia, and an increasing interest from industry. Ceramic Fuel Cells Ltd. (CFCL) has a leading position in planar solid oxide fuel cells (SOFCs) technology, which is being developed for a variety of applications, and next year Perth in Western Australia is hosting a trial of buses powered by proton-exchange fuel cells. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Grand canonical Monte Carlo (GCMC) simulation was used for the systematic investigation of the supercritical methane adsorption at 273 K on an open graphite surface and in slitlike micropores of different sizes. For both considered adsorption systems the calculated excess adsorption isotherms exhibit a maximum. The effect of the pore size on the maximum surface excess and isosteric enthalpy of adsorption for methane storage at 273 K is discussed. The microscopic detailed picture of methane densification near the homogeneous graphite wall and in slitlike pores at 273 K is presented with selected local density profiles and snapshots. Finally, the reliable pore size distributions, obtained in the range of the microporosity, for two pitch-based microporous activated carbon fibers are calculated from the local excess adsorption isotherms obtained via the GCMC simulation. The current systematic study of supercritical methane adsorption both on an open graphite surface and in slitlike micropores performed by the GCMC summarizes recent investigations performed at slightly different temperatures and usually a lower pressure range by advanced methods based on the statistical thermodynamics.
Resumo:
Worldwide, research and policy momentum is increasing in the move towards a hydrogen economy. Australia is one of the highest per capita users of energy, but relies heavily on fossil fuels to fulfil its energy requirements-thus making it one of the highest per capita polluters. It is also a country rich in natural resources, giving it the full range of options for a hydrogen economy. With the first Australian Hydrogen Study being completed by the end of 2003, there has as yet been little analysis of the options available to this country specifically. This paper reviews the resources, production and utilisation technology available for a hydrogen economy in Australia, and discusses some of the advantages and disadvantages of the different options. It points out that coal, natural gas, biomass and water are the most promising hydrogen sources at this stage, while solid oxide and molten carbonate fuel cells may hold the advantage in terms of current expertise for utilising hydrogen rich gases for stationary power in Australia. (c) 2004 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Novel carbon nanostructures can serve as effective storage media for methane, a source of clean energy for the future. We have used Grand Canonical Monte Carlo Simulation for the modeling of methane storage at 293 K and pressures up to 80 MPa in idealized bundles of (10,10) armchair-type single-walled carbon nanotubes and wormlike carbon pores. We have found that these carbon nanomaterials can be treated as the world's smallest high-capacity methane storage vessels. Our simulation results indicate that such novel carbon nanostructures can reach a high volumetric energy storage, exceeding the US FreedomCAR Partnership target of 2010 (5.4 MJ dm(-3)), at low to moderate pressures ranging from 1 to 7 MPa at 293 K. On the contrary, in the absence of these nanomaterials, methane needs to be compressed to approximately 13 MPa at 293 K to achieve the same target. The light carbon membranes composed of bundles of single-walled carbon nanotubes or wormlike pores efficiently physisorb methane at low to moderate pressures at 293 K, which we believe should be particularly important for automobiles and stationary devices. However, above 15-20 MPa at 293 K, all investigated samples of novel carbon nanomaterials are not as effective when compared with compression alone since the stored volumetric energy and power saturate at values below those of the bulk, compressed fluid.
Resumo:
Error condition detected Although coal may be viewed as a dirty fuel due to its high greenhouse emissions when combusted, a strong case can be made for coal to be a major world source of clean H-2 energy. Apart from the fact that resources of coal will outlast oil and natural gas by centuries, there is a shift towards developing environmentally benign coal technologies, which can lead to high energy conversion efficiencies and low air pollution emissions as compared to conventional coal fired power generation plant. There are currently several world research and industrial development projects in the areas of Integrated Gasification Combined Cycles (IGCC) and Integrated Gasification Fuel Cell (IGFC) systems. In such systems, there is a need to integrate complex unit operations including gasifiers, gas separation and cleaning units, water gas shift reactors, turbines, heat exchangers, steam generators and fuel cells. IGFC systems tested in the USA, Europe and Japan employing gasifiers (Texaco, Lurgi and Eagle) and fuel cells have resulted in energy conversions at efficiency of 47.5% (HHV) which is much higher than the 30-35% efficiency of conventional coal fired power generation. Solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are the front runners in energy production from coal gases. These fuel cells can operate at high temperatures and are robust to gas poisoning impurities. IGCC and IGFC technologies are expensive and currently economically uncompetitive as compared to established and mature power generation technology. However, further efficiency and technology improvements coupled with world pressures on limitation of greenhouse gases and other gaseous pollutants could make IGCC/IGFC technically and economically viable for hydrogen production and utilisation in clean and environmentally benign energy systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
CO2 Geosequestration is seen by many worldwide scientists and engineers as a leading prospective solution to the global warming problem arising from excessive CO2 and other greenhouse gas emissions. CO2 geosequestration in coal seams has two important strategic benefits: the process has an extremely low risk of leakage, due to the adsorbed state of the CO2 and the known reservoir context of essentially-zero leakage into which it is be injected; the second benefit arises from the valuable by-product, clean burning coalbed methane gas. This paper presents the authors’ experience, knowledge and perspective on what coal properties and engineering processes would favour implementing a demonstration or commercial CO2 storage-in-coal project, in Queensland, Australia. As such, it may be considered a template for screening studies to select the optimum coal seam reservoir, and for preliminary studies in designing the injection system and predicting production response to the technology. The paper concludes by examining the current knowledge gaps of CO2 geosequestration in coal, identifying further basic and applied research topics.
Resumo:
A pesquisa possui como objetivo geral levantar, analisar, quantificar e classificar por níveis de competências quais foram os profissionais recrutados pela Petrobras no período pós-descoberta da camada do pré-sal brasileiro. A pesquisa se justifica pela previsão de crescimento da produção nacional de petróleo e gás natural estimada para os próximos anos o que poderá causar um descompasso entre a oferta e a demanda de mão de obra para o seu desenvolvimento. A abordagem metodológica desenvolvida para realização da pesquisa foi a da pesquisa exploratória, descritiva e documental, através de análise qualitativa e quantitativa longitudinal. Como resultado, a pesquisa revelou que a Petrobras não recruta profissionais para posições de nível gerencial. Os resultados demonstraram ainda que 56,8% das vagas abertas ao recrutamento são destinadas aos profissionais com formação de nível médio e que 76,4porcento das vagas são relacionadas ao processo fabril evidenciando que a Petrobras utiliza como porta de entrada a contratação de profissionais de nível médio com formação técnica. Ao realizar a classificação e qualificação da oferta de vagas abertas ao recrutamento a pesquisa identificou cinco grupos de profissionais distribuídos por três eixos de carreira e quatro níveis salariais que quando categorizados por níveis de competências que foram responsáveis por 69porcento de todas as vagas abertas ao recrutamento. Os dois primeiros grupos em relevância estão relacionados ao eixo de carreira de operações industriais onde o nível superior (O6) e o nível inferior (O1) foram os responsáveis por 22porcento e 21porcento respectivamente do total da oferta de vagas no período. O terceiro grupo em importância diz respeito ao eixo de carreira engenharia, processos e projetos onde os profissionais categorizados com nível médio (E3) numa escala de dois a cinco foram os responsáveis por 13porcento do total de vagas abertas. O quarto e quinto grupos estão relacionados ao eixo de carreira gestão de negócios e categorizados por níveis de competências nos níveis três (G3) e quatro (G4) em uma escala de um a cinco sendo estes responsáveis 7porcento e 6porcento do total de vagas.