917 resultados para closed-loop nash equilibrium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charging of micron-size particulates, often appearing in fluorocarbon plasma etching experiments, is considered. It is shown that in inductively coupled and microwave slot-excited plasmas of C4F8 and Ar gas mixtures, the equilibrium particle charge and charge relaxation processes are controlled by a combination of microscopic electron, atomic (Ar+ and F+), and molecular ion (CF+ 3, CF+ 2, and CF+) currents. The impact of molecular ion currents on the particulate charging and charge relaxation processes is analyzed. It is revealed that in low-power (<0.5 kW) microwave slot-excited plasmas, the impact of the combined molecular ion current to the total positive microscopic current on the particle can be as high as 40%. The particulate charge relaxation rate in fluorocarbon plasmas appears to exceed 108 s-1, which is almost one order of magnitude higher than that from purely argon plasmas. This can be attributed to the impact of positive currents of fluorocarbon molecular ions, as well as to the electron density fluctuations with particle charge, associated with electron capture and release by the particulates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luminescent ZnO nanoparticles have been synthesized on silicon and quartz substrates under extremely non-equilibrium conditions of energetic ion condensation during the post-focus phase in a dense plasma focus (DPF) device. Ar+, O+, Zn+ and ZnO+ ions are generated as a result of interaction of hot and dense argon plasma focus with the surfaces of ZnO pellets placed at the anode. It is found that the sizes, structural and photoluminescence (PL) properties of the ZnO nanoparticles appear to be quite different on Si(1 0 0) and quartz substrates. The results of x-ray diffractometry and atomic force microscopy show that the ZnO nanoparticles are crystalline and range in size from 5-7 nm on Si(1 0 0) substrates to 10-38 nm on quartz substrates. Room-temperature PL studies reveal strong peaks related to excitonic bands and defects for the ZnO nanoparticles deposited on Si (1 0 0), whereas the excitonic bands are not excited in the quartz substrate case. Raman studies indicate the presence of E2 (high) mode for ZnO nanoparticles deposited on Si(1 0 0).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline silicon thin films were deposited on single-crystal silicon and glass substrates simultaneously by inductively coupled plasma-assisted chemical vapor deposition from the reactive silane reactant gas diluted with hydrogen at a substrate temperature of 200 °C. The effect of hydrogen dilution ratio X (X is defined as the flow rate ratio of hydrogen to silane gas), ranging from 1 to 20, on the structural and optical properties of the deposited films, is extensively investigated by Raman spectroscopy, X-ray diffraction, Fourier transform infrared absorption spectroscopy, UV/VIS spectroscopy, and scanning electron microscopy. Our experimental results reveal that, with the increase of the hydrogen dilution ratio X, the deposition rate Rd and hydrogen content CH are reduced while the crystalline fraction Fc, mean grain size δ and optical bandgap ETauc are increased. In comparison with other plasma enhanced chemical vapor deposition methods of nanocrystalline silicon films where a very high hydrogen dilution ratio X is routinely required (e.g. X > 16), we have achieved nanocrystalline silicon films at a very low hydrogen dilution ratio of 1, featuring a high deposition rate of 1.57 nm/s, a high crystalline fraction of 67.1%, a very low hydrogen content of 4.4 at.%, an optical bandgap of 1.89 eV, and an almost vertically aligned columnar structure with a mean grain size of approximately 19 nm. We have also shown that a sufficient amount of atomic hydrogen on the growth surface essential for the formation of nanocrystalline silicon is obtained through highly-effective dissociation of silane and hydrogen molecules in the high-density inductively coupled plasmas. © 2009 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equilibrium profiles of the plasma parameters of large-area if discharges in a finite-length metal-shielded dielectric cylinder are computed using a two-dimensional fluid code. The rf power is coupled to the plasma through edge-localized surface waves traveling in the azimuthal direction along the plasma edge. It is shown that self-consistent accounting for axial plasma diffusion and radial nonuniformity of the electron temperature can explain the frequently reported deviations of experimentally measured radial density profiles from that of the conventional linear diffusion models. The simulation results are in a good agreement with existing experimental data obtained from surface-wave sustained large-diameter plasmas. © 2002 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model for electronegative plasmas containing charged dust or colloidal grains was used. Numerical solutions based on the model demonstrate how a low-pressure diffusion equilibrium of the complex electronegative plasma system is dynamically sustained through plasma particle sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usual practice to study a large power system is through digital computer simulation. However, the impact of large scale use of small distributed generators on a power network cannot be evaluated strictly by simulation since many of these components cannot be accurately modelled. Moreover, the network complexity makes the task of practical testing on a physical network nearly impossible. This study discusses the paradigm of interfacing a real-time simulation of a power system to real-life hardware devices. This type of splitting a network into two parts and running a real-time simulation with a physical system in parallel is usually termed as power-hardware-in-the-loop (PHIL) simulation. The hardware part is driven by a voltage source converter that amplifies the signals of the simulator. In this paper, the effects of suitable control strategy on the performance of PHIL and the associated stability aspects are analysed in detail. The analyses are validated through several experimental tests using an real-time digital simulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, electric propulsion systems have increasingly been used in land, sea and air vehicles. The vehicular power systems are usually loaded with tightly regulated power electronic converters which tend to draw constant power. Since the constant power loads (CPLs) impose negative incremental resistance characteristics on the feeder system, they pose a potential threat to the stability of vehicular power systems. This effect becomes more significant in the presence of distribution lines between source and load in large vehicular power systems such as electric ships and more electric aircrafts. System transients such as sudden drop of converter side loads or increase of constant power requirement can cause complete system instability. Most of the existing research work focuses on the modeling and stabilization of DC vehicular power systems with CPLs. Only a few solutions are proposed to stabilize AC vehicular power systems with non-negligible distribution lines and CPLs. Therefore, this paper proposes a novel loop cancellation technique to eliminate constant power instability in AC vehicular power systems with a theoretically unbounded system stability region. Analysis is carried out on system stability with the proposed method and simulation results are presented to validate its effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Icing (cryotherapy) is being widely used for the treatment of closed soft tissue trauma (CSTT), such as those resulting from sport injuries. It is believed that cryotherapy induces vasoconstriction and through this mechanism reduces inflammation [1]. However, the impact of this technique on the healing of impaired vasculature and muscle injuries following trauma remains controversial. Recent evidence suggests that the muscle regeneration is delayed after cryotherapy [2]. Consequently, we aimed to investigate the effect of cryotherapy on the vascular morphology following CSTT using an experimental model in rats by contrast-enhanced micro-CT imaging. METHODS Fifty four rats were divided into three main groups: control (no injury, n=6), sham (CSTT but no icing treatment, n=24) and icing (CSTT, treated with one session of ice block massaged directly on the injured muscle for 20 minutes, n=24). The CSTT was induced to the left thigh (Biceps Femoris) of anaesthetised rats (Male, Wistar) to create a standardized and reproducible vascular and muscle injury using an impact device [3]. Following trauma, animals were euthanized after 1, 3, 7, and 28 days healing time (n=6 for each time point). For a three-dimensional vascular morphological assessment, the blood vessels of euthanised rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil, MV 122, Flowtech, USA) using an infusion pump. Both hind-limbs were dissected, and then the injured and non-injured limbs were imaged using a micro-CT scanner (µCT 40, Scanco Medical, Switzerland) and total volume of the perfused blood vessels (TVV) was calculated. More detailed morphological parameters such as vessel volume (VV), diameter (VD), spacing (VSp), number (VN) and connectivity (VConn) were quantified through high resolution (6 µm), micro-CT-scanned biopsy samples (diameter: 8mm) taken directly from the region of the injured muscles. The biopsies were then analysed histologically to confirm the results derived from contrast-enhanced micro-CT imaging. RESULTS AND DISCUSSION The TVV was significantly higher in the injured legs compared to the non-injured legs at day 1 and 7 in the sham group and at day 28 in both sham and icing groups. The biopsies from the injured legs of the icing group showed a significant reduction in VV, VN, VD, VConn and an increase in VSp compared to those in the sham and control groups at days 1, 3 and 7, post injury. While the injured legs of the sham group exhibited a decrease in VN and VConn 28 days post trauma, indicating a return to the original values prior to trauma, these parameters had increased in the icing group (Figure 1). Also, at day 1 post injury, VV and VD of the injured legs were significantly higher in the sham group compared to the icing group, which may be attributed to the effect of vasoconstriction induced by icing. Further histomorphological evaluation of day 1 post injury, indicated that although cryotherapy significantly reduced the injury size and influx of inflammatory cells, including macrophages and neutrophils, a delay in vascular and muscle fiber regeneration was found at later time points confirming other reports from the literature [2]. CONCLUSIONS We have demonstrated using micro-CT imaging that the vascular morphology changes after CSTT, and that its recovery is affected by therapeutic modalities such as icing. This may be useful for the development of future clinical monitoring, diagnosis and treatment of CSTT. While icing reduces the swelling after trauma, our results suggest that it may delay the recovery of the vasculature in the injured tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved Phase-Locked Loop (PLL) for extracting phase and frequency of the fundamental component of a highly distorted grid voltage is presented. The structure of the single-phase PLL is based on the Synchronous Reference Frame (SRF) PLL and uses an All Pass Filter (APF) to generate the quadrature component from the single phase input voltage. In order to filter the harmonic content, a Moving Average Filter (MAF) is used, and performance is improved by designing a lead compensator and also a feed-forward compensator. The simulation results are compared to show the improved performance with feed-forward. In addition, the frequency dependency of MAF is dealt with by a proposed method for adaption to the frequency. This method changes the window size based on the frequency on a sample-by-sample basis. By using this method, the speed of resizing can be reduced in order to decrease the output ripples caused by window size variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalised bidding model is developed to calculate a bidder’s expected profit and auctioners expected revenue/payment for both a General Independent Value and Independent Private Value (IPV) kmth price sealed-bid auction (where the mth bidder wins at the kth bid payment) using a linear (affine) mark-up function. The Common Value (CV) assumption, and highbid and lowbid symmetric and asymmetric First Price Auctions and Second Price Auctions are included as special cases. The optimal n bidder symmetric analytical results are then provided for the uniform IPV and CV models in equilibrium. Final comments concern implications, the assumptions involved and prospects for further research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two Archaean komatiitic flows, Fred’s Flow in Canada and the Murphy Well Flow in Australia, have similar thicknesses (120 and 160 m) but very different compositions and internal structures. Their contrasting differentiation profiles are keys to determine the cooling and crystallization mechanisms that operated during the eruption of Archaean ultramafic lavas. Fred’s Flow is the type example of a thick komatiitic basalt flow. It is strongly differentiated and consists of a succession of layers with contrasting textures and compositions. The layering is readily explained by the accumulation of olivine and pyroxene in a lower cumulate layer and by evolution of the liquid composition during downward growth of spinifex-textured rocks within the upper crust. The magmas that erupted to form Fred’s Flow had variable compositions, ranging from 12 to 20 wt% MgO, and phenocryst contents from 0 to 20 vol%. The flow was emplaced by two pulses. A first ~20-m-thick pulse was followed by another more voluminous but less magnesian pulse that inflated the flow to its present 120 m thickness. Following the second pulse, the flow crystallized in a closed system and differentiated into cumulates containing 30–38 wt% MgO and a residual gabbroic layer with only 6 wt% MgO. The Murphy Well Flow, in contrast, has a remarkably uniform composition throughout. It comprises a 20-m-thick upper layer of fine-grained dendritic olivine and 2–5 vol% amygdales, a 110–120 m intermediate layer of olivine porphyry and a 20–30 m basal layer of olivine orthocumulate. Throughout the flow, MgO contents vary little, from only 30 to 33 wt%, except for the slightly more magnesian basal layer (38–40 wt%). The uniform composition of the flow and dendritic olivine habits in the upper 20 m point to rapid cooling of a highly magnesian liquid with a composition like that of the bulk of the flow. Under equilibrium conditions, this liquid should have crystallized olivine with the composition Fo94.9, but the most magnesian composition measured by electron microprobe in samples from the flow is Fo92.9. To explain these features, we propose that the parental liquid contained around 32 wt% MgO and 3 wt% H2O. This liquid degassed during the eruption, creating a supercooled liquid that solidified quickly and crystallized olivine with non-equilibrium textures and compositions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Closed WS2 nanoboxes were formed by topotactic sulfidization of a WO3/WO3 center dot 1/3H(2)O intergrowth precursor. Automated diffraction tomography was used to elucidate the growth mechanism of these unconventional hollow structures. By partial conversion and structural analysis of the products, each of them representing a snapshot of the reaction at a given point in time, the overall reaction can be broken down into a cascade of individual steps and each of them identified with a basic mechanism. During the initial step of sulfidization WO3 center dot 1/3H(2)O transforms into hexagonal WO3 whose surface allows for the epitaxial induction of WS2. The initially formed platelets of WS2 exhibit a preferred orientation with respect to the nanorod surface. In the final step individual layers of WS2 coalesce to form closed shells. In essence, a cascade of several topotactic reactions leads to epitactic induction and formation of closed rectangular hollow boxes made up from hexagonal layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A virtual power system can be interfaced with a physical system to form a power hardware-in-the-loop (PHIL) simulation. In this scheme, the virtual system can be simulated in a fast parallel processor to provide near real-time outputs, which then can be interfaced to a physical hardware that is called the hardware under test (HuT). Stable operation of the entire system, while maintaining acceptable accuracy, is the main challenge of a PHIL simulation. In this paper, after an extended stability analysis for voltage and current type interfaces, some guidelines are provided to have a stable PHIL simulation. The presented analysis have been evaluated by performing several experimental tests using a Real Time Digital Simulator (RTDS™) and a voltage source converter (VSC). The practical test results are consistent with the proposed analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project develops the required guidelines to assure stable and accurate operation of Power-Hardware-in-the-Loop implementations. The proposals of this research have been theoretically analyzed and practically examined using a Real-Time Digital Simulator. In this research, the interaction between software simulated power network and the physical power system has been studied. The conditions for different operating regimes have been derived and the corresponding analyses have been presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the complexity of calcium ion exchange with sodium exchanged weak acid cation resin (DOW MAC-3). Exchange equilibria recorded for a range of different solution normalities revealed profiles which were represented by conventional “L” or “H” type isotherms at low values of equilibrium concentration (Ce) of calcium ions, plus a superimposed region of increasing calcium uptake was observed at high Ce values. The loading of calcium ions was determined to be ca. 53.5 to 58.7 g/kg of resin when modelling only the sorption curve created at low Ce values,which exhibited a well-defined plateau. The calculated calcium ion loading capacity for DOWMAC-3 resin appeared to correlate with the manufacturer's recommendation. The phenomenon of super equivalent ion exchange (SEIX) was observed when the “driving force” for the exchange process was increased in excess of 2.25 mmol calcium ions per gram of resin in the starting solution. This latter event was explained in terms of displacement of sodium ions from sodium hydroxide solution which remained in the resin bead following the initial conversion of the as supplied “H+” exchanged resin sites to the “Na+” version required for softening studies. Evidence for hydrolysis of a small fraction of the sites on the sodium exchanged resin surface was noted. The importance of carefully choosing experimental parameters was discussed especially in relation to application of the Langmuir–Vageler expression. This latter model which compared the ratio of the initial calcium ion concentration in solution to resin mass, versus final equilibrium loading of the calcium ions on the resin; was discovered to be an excellent means of identifying the progress of the calcium–sodium ion exchange process. Moreover, the Langmuir–Vageler model facilitated standardization of various calcium–sodium ion exchange experiments which allowed systematic experimental design.