881 resultados para cation amelioration
Resumo:
The ionic liquids (ILs) 1-ethoxyethyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, [EtO-(CH(2))(2)MMI][Tf(2)N], and N-(ethoxyethyl)-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [EtO(CH(2))(2)MMor][Tf(2)N] were synthesized, and relevant properties, such as thermal stability, density, viscosity, electrochemical behavior, ionic conductivity, and self-diffusion coefficients for both ionic species, were measured and compared with those of their alkyl counterparts, 1-n-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, [BMMI][Tf(2)N], and N-n-butyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide,[BMP][Tf(2)N] and N-n-butyl-N-methylmorpholinium bis(trilfuoromethanesulfonyl)imide [BMMor][Tf(2)N][. This comparison was done to evaluate the effects caused by the presence of the ether bond in either the side chain or in the organic cation ring. The salt, LiTf(2)N, was added to the systems to estimate IL behavior with regard to lithium cation transport. Pure [EtO(CH(2))(2)MMI][Tf(2)N] and their LiTf(2)N solutions showed low viscosity and the highest conductivity among the ILs studied. The H(R) (AC conductivity/NMR calculated conductivity ratio) values showed that, after addition of LiTf(2)N, ILs containing the ether bond seemed to have a greater number of charged species. Structural reasons could explain these high observed HR values for [EtO(CH(2))(2)MMor][Tf(2)N].
Resumo:
Raman and electronic spectra of the [3,5-bis(dicyanomethylene)cyclopentane-1,2,4-trionate] dianion, the croconate violet (CV), are reported in solutions of ionic liquids based on imidazolium cations. Different normal modes of the CV anion, nu (C=O), nu (CO) + nu (CC) + nu (CCN), and nu(C N), were used as probes of solvation characteristics of ionic liquids, and were compared with spectra of CV in common solvents. The spectra of CV in ionic liquids are similar to those in dichloromethane solution, but distinct from those in protic solvents such as ethanol or water. The UV-vis spectra of CV in ionic liquids strongly suggest pi-pi interactions between the CV anion and the imidazolium cation. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
This work is aimed at studying the adsorption mechanism of short chain 20-mer pyrimidinic homoss-DNA (oligodeoxyribonucleotide, ODN: polyC(20) and polyT(20)) onto CNT by reflectometry. To analyze the experimental data, the effective-medium theory using the Bruggemann approximation represents a Suitable optical model to account for the surface properties (roughness, thickness, and optical constants) and the size of the adsorbate. Systematic information about the involved interactions is obtained by changing the physicochemical properties of the system. Hydrophobic and electrostatic interactions are evaluated by comparing the adsorption oil hydrophobic CNT and oil hydrophilic silica and by Modulating the ionic Strength With and without Mg(2+). The ODN adsorption process oil CNT is driven by hydrophobic interactions only when the electrostatic repulsion is Suppressed. The adsorption mode results in ODN molecules in a side-on orientation with the bases (nonpolar region) toward the surface. This unfavorable orientation is partially reverse by adding Mg(2+). On the other hand, the adsorption oil silica is dominated by the strong repulsive electrostatic interaction that is screened at high ionic strength or mediated by Mg(2+). The cation-mediated process induces the interaction of the phosphate backbone (polar region) with the surface, leaving the bases free for hybridization. Although the general adsorption behavior of the pyrimidine bases is the same, polyC(20) presents higher affinity for the CNT Surface due to its acid-base properties.
Resumo:
The electrochemical behavior of poly(methylene blue) on different electrodes has been investigated by electrochemical quartz crystal microbalance and in situ spectrophotometric measurements coupled to cyclic voltammetry. Polymeric films were obtained potentiodynamically and the charge transport mechanism was analyzed. The electrochemical results show that polymer electroactivity depends not only on pH but also on the substrate. Charge compensation changes with both pH and the size of the anions showing a transition in the pH range of polymer pKa. It was demonstrated by spectroelectrochemical experiments that the electroactivity of the film depends on the radical/radical cation equilibrium. The potentials where the most electroactive species are formed have been determined. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Metal cation toxicity to basidiomycete fungi is poorly understood, despite its well-known importance in terrestrial ecosystems. Moreover, there is no reported methodology for the routine evaluation of metal toxicity to basidiomycetes. In the present study, we describe the development of a procedure to assess the acute toxicity of metal cations (Na(+), K(+), Li(+), Ca(2+), Mg(2+), Co(2+), Zn(2+), Ni(2+), Mn(2+), Cd(2+), and Cu(2+)) to the bioluminescent basidiomycete fungus Gerronema viridilucens. The method is based on the decrease in the intensity of bioluminescence resulting from injuries sustained by the fungus mycelium exposed to either essential or nonessential metal toxicants. The assay described herein enables LIS to propose a metal toxicity series to Gerronenia viridilucens based on data obtained from the bioluminescence intensity (median effective concentration [EC50] values) versus metal concentration: Cd(2+) > Cu(2+) > Mn(2+) approximate to Ni(2+) approximate to Co(2+) > Zn(2+) > Mg(2+) > Li(+) > K(+) approximate to Na(+) > Ca(2+), and to shed some li-ht on the mechanism of toxic action of metal cations to basidiomycete fungi. Environ. Toxicol. Chem. 2010;29:320-326. (C) 2009 SETAC
Resumo:
We have demonstrated previously that the complex bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl)pyridine-N,N`]copper(II), named [Cu(isaepy)(2)], induces AMPK (AMP-activated protein kinase)-dependent/p53-mediated apoptosis in tumour cells by targeting mitochondria. In the present study, we found that p38(MAPK) (p38 mitogen-activated protein kinase) is the molecular link in the phosphorylation cascade connecting AMPK to p53. Transfection of SH-SY5Y cells with a dominant-negative mutant of AMPK resulted in a decrease in apoptosis and a significant reduction in phospho-active p38(MAPK) and p53. Similarly, reverse genetics of p38(MAPK) yielded a reduction in p53 and a decrease in the extent of apoptosis, confirming an exclusive hierarchy of activation that proceeds via AMPK/p38(MAPK)/p53. Fuel supplies counteracted [Cu(isaepy)(2)]-induced apoptosis and AMPK/p38(MAPK)/p53 activation, with glucose being the most effective, suggesting a role for energetic imbalance in [Cu(isaepy)(2)] toxicity. Co-administration of 3BrPA (3-bromopyruvate), a well-known inhibitor of glycolysis, and succinate dehydrogenase, enhanced apoptosis and AMPK/p38(MAPK)/p53 signalling pathway activation. Under these conditions, no toxic effect was observed in SOD (superoxide dismutase)-overexpressing SH-SY5Y cells or in PCNs (primary cortical neurons), which are, conversely, sensitized to the combined treatment with [Cu(isaepy)(2)] and 3BrPA only if grown in low-glucose medium or incubated with the glucose-6-phosphate dehydrogenase inhibitor dehydroepiandrosterone. Overall, the results suggest that NADPH deriving from the pentose phosphate pathway contributes to PCN resistance to [Cu(isaepy)(2)] toxicity and propose its employment in combination with 3BrPA as possible tool for cancer treatment.
Resumo:
The viscosity of ionic liquids based on quaternary ammonium cations is reduced when one of the alkyl chains is replaced by an alkoxy chain (Zhou et al. Chem. Eur. J. 2005, 11, 752.). A microscopic picture of the role played by the ether function in decreasing the viscosity of quaternary ammonium ionic liquids is provided here by molecular dynamics (MD) simulations. A model for the ionic liquid N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, MOENM(2)E TFSI, is compared to the tetraalky-lammonium counterpart. The alkoxy derivative has lower viscosity, higher ionic diffusion coefficients, and higher conductivity than the tetraalkyl system at the same density and temperature. A clear signature of the ether function on the liquid structure is observed in cation-cation correlations, but not in anion-anion or anion-cation correlations. In both the alkyl and the alkoxy ionic liquids, there is aggregation of long chains of neighboring cations within micelle-like structures. The MD simulations indicate that the less effective assembly between the more flexible alkoxy chains, in comparison to alkyl chains, is the structural reason for higher ionic mobility in MOENM(2)E TFSI.
Resumo:
Thin films of MnO(2) nanoparticles were grown using the layer-by-layer method with poly (diallyldimetylammonium) as the intercalated layer. The film growth was followed by UV-vis, electrochemical quartz crystal microbalance (EQCM), and atomic force microscopy. Linear growth due to electrostatic immobilization of layers was observed up to 30 bilayers, but electrical connectivity was maintained only for 12 MnO(2)/PPDA bilayers. The electrochemical characterization of this film in 1-butyl-2,3-dimethyl-imidazolium (BMMI) bis(trifluoromethanesulfonyl)imide (TFSI) (BMMITFSI) with and without addition of a lithium salt indicated a higher electrochemical response of the nanostructured electrode in the lithium-containing electrolyte. On the basis of EQCM experiments, it was possible to confirm that the charge compensation process is achieved mainly by the TFSI anion at short times (<2 s) and by BMMI and lithium cations at longer times. The fact that large ions like TFSI and BMMI participate in the electroneutrality is attributed to the redox reaction that occurs at the superficial sites and to the high concentration of these species compared to that of lithium cations.
Resumo:
Diffusion coefficients and retardation factors of two metal cations (Cd2+ and Pb2+) were measured for a compacted Brazilian saprolitic soil derived from gneiss, aiming to assess its geoenvironmental performance as a liner for waste disposal sites. This soil occurs extensively all over the country in very thick layers, but has not been used in liners because of its hydraulic conductivity, higher than 10(-9) m/s when compacted at optimum water content of standard Proctor energy, but which can be reduced by means of appropriate compaction techniques or additives. Batch, column, and diffusion tests were carried out with monospecies synthetic solutions at pH 1, 3, and 5.5. Measured diffusion coefficients varied between 0.5 and 4 X 10(-10) m(2)/s. Retardation factors show that cadmium, a very mobile cation, is not adsorbed at pH I but is significantly retained at pH 3 and pH 5.5, whereas lead is retained at all tested pH values though slightly at pH 1. Estimated retardation factors from batch tests were 1.3-2.3 times those resulting from column tests and at its highest when obtained by diffusion tests; whereas batch tests allow a more complete exposure of the soil grains to the solution, time-dependent nonspecific adsorption may take longer to occur. The importance of contact time was observed and should be considered in further investigations. Its significant retention of metals suggests a promising utilization of this soil as a bottom liner for wastes landfills.
Resumo:
Polymeric electroactive blends formed by electropolymerized aniline inside a non-conductive polyacrylamide porous matrix were already shown as suitable materials for the electrocontrolled release of model compounds like safranin. In this paper the intermolecular interactions between the two components of the blend are put in evidence by Raman spectroscopy measurements. Also, in situ optical microscopy was used to follow changes occurring in the polyaniline/polyacrylamide blend during pyrocathecol violet release tests. These two sets of experiments show the possibility of controlling electrochemically the release of both, safranin (a cation) and pyrocathecol violet (an anion) and allow to infer a release mechanism based on the electromechanical properties of the blends explaining the dependence of the release kinetics on the applied potential. Tetracycline release curves for different potentials and pHs are shown and the obtained profiles are in agreement with those expected for a device acting as an electrochemically driven pump due to the artificial muscle properties of the conducting phase of the blends. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Benzene adsorbed on highly acidic sulfated TiO2 (S-TiO2) shows an intriguing resonance Raman (RR) effect, with excitation in the blue-violet region. There are very interesting spectral features: the preferential enhancement of the e(2g) mode (1595 cm(-1)) in relation to the a(1g) mode (ring-breathing mode at 995 cm(-1)) and the appearance of bands at 1565 and 1514 cm(-1). The band at 1565 cm(-1) is probably one of the components of the e(2g) split band, originally a doubly degenerate mode (8a, 8b) in neat benzene, and the band at 1514 cm(-1) is assigned to the 19a mode, an inactive mode in neat benzene. These facts indicate a lowering of symmetry in adsorbed benzene, which may be caused by a strong interaction between S-TiO2 and the benzene molecule with formation of a benzene to Ti (IV) charge transfer (CT) complex or by the formation of a benzene radical cation species. However, the RR spectra of the adsorbed benzene cannot be assigned to the benzene radical cation because the observed wavenumber of the ring-breathing mode does not have the value expected for this species. Moreover, it was found by ESR measurements that the amount of radicals was very low, and so it was concluded that a CT complex is the species that originates the RR spectra. The most favorable intensification of the band at 1595 cm(-1) in the RR spectra of benzene/S-TiO2 at higher excitation energy corroborates this hypothesis, as an absorption band in this energy range, assigned to a CT transition, is observed. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Lithium salt solutions of Li(CF3SO2)(2)N, LiTFSI, in a room-temperature ionic liquid (RTIL), 1-butyl-2,3-dimethyl-imidazolium cation, BMMI, and the (CF3SO2)(2)N-, bis(trifluoromethanesulfonyl)imide anion, [BMMI][TFSI], were prepared in different concentrations. Thermal properties, density, viscosity, ionic conductivity, and self-diffusion coefficients were determined at different temperatures for pure [BMMI][TFSI] and the lithium solutions. Raman spectroscopy measurements and computer simulations were also carried out in order to understand the microscopic origin of the observed changes in transport coefficients. Slopes of Walden plots for conductivity and fluidity, and the ratio between the actual conductivity and the Nernst-Einstein estimate for conductivity, decrease with increasing LiTFSI content. All of these studies indicated the formation of aggregates of different chemical nature, as it is corroborated by the Raman spectra. In addition, molecular dynamics (MD) simulations showed that the coordination of Li+ by oxygen atoms of TFSI anions changes with Li+ concentration producing a remarkable change of the RTIL structure with a concomitant reduction of diffusion coefficients of all species in the solutions.
Resumo:
A spectroscopic study was performed showing that the [Fe(III)(L(2-))(2)](1-) (L(2-) = dopacatecholate) complex reacts with Ni(II), Co(II) and Zn(II) in an aqueous solution containing S(2)O(3)(2-) resulting in the soluble [M(L(1-))(3)](1-) (L(1-) = dopasemiquinone; M = Ni(II), Co(II) or Zn(II) complex species. The Raman and IR spectra of the [CTA][M(L(1-))(3)] complexes, CTA hexadecyltrimethylammonium cation, in the solid state were obtained. The kinetic constants for the metal substitution reactions were determined at four different temperatures, providing values for Delta W(not equal) Delta S(not equal) and Delta G(not equal). The reactions were slow (k = 10(-1)1 M s(-1)) and endothermic. The system investigated can be considered as a simplified model to explain some aspects of siderophore chemistry. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Raman spectra of dilute solutions of acetonitrile in ionic liquids reveal the characteristic features of ionic liquids` polarity. This is accomplished by investigating the Raman bandshape of the nu (CN) band, corresponding to the CN stretching mode of CH(3)CN, which is a very sensitive probe of the local environment. The amphiphilic nature of the CH(3)CN molecule allows us to observe the effect of electron pair acceptor and electron pair donor characteristics on ionic liquids. It has been found that the overall polarity of nine different ionic liquids based on 1-alkyl-3-methylimidazolium cations is more dependent on the anion than cation. The observed wavenumber shift of the nu (CN) band of CH(3)CN in ionic liquids containing alkylsulfate anions agrees with the significant different values previously measured for the dielectric constant of these ionic liquids. The conclusions obtained from the analysis of the nu (CN) band were corroborated by the analysis of the symmetric nu(1) (CD(3)) stretching mode of deuterated acetonitrile in different ionic liquids. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The Raman band assigned to the nu(C=O)mode in N,N-dimethylformamide (at ca. 1660 cm(-1)) was used as a probe to study a group of ionic liquids 1-alkyl-3-methylimidazolium bromide ([C(n)Mlm]Br) with different alkyl groups (n = 2, 4, 6, 8 and 10 carbons) in binary equimolar binary mixtures with dimethylformamide. Due to the high electric dipole moment of the group C=O, there is a substantial coupling between adjacent molecules in the solution, and the corresponding Raman band involves both vibrational and reorientational modes. Different chain lengths of the ILs lead to different extents of the uncoupling of adjacent molecules of dimethylformamide, resulting in different shifts for this band in the mixtures. Information about the organization of ionic liquids in solution was obtained and a model of aggregation for these systems is proposed. (C) 2010 Elsevier B.V. All rights reserved.