969 resultados para bone marrow derived mesenchymal cells (BMSCs)
Resumo:
The use of extracellular matrix materials as scaffolds for the repair and regeneration of tissues is receiving increased attention. The current study was undertaken to test whether extracellular matrix formed by osteoblasts in vitro could be used as a scaffold for osteoblast transplantation and induce new bone formation in critical size osseous defects in vivo. Human osteoblasts derived from alveolar bone were cultured in six-well plates until confluent and then in mineralization media for a further period of 3 weeks to form an osteoblast-mineralized matrix complex. Histologically, at this time point a tissue structure with a connective tissue-like morphology was formed. Type I collagen was the major extracellular component present and appeared to determine the matrix macrostructure. Other bone-related proteins such as alkaline phosphatase (ALP), bone morphogenetic protein (BMP)-2 and -4, bone sialoprotein (BSP), osteopontin (OPN), and osteocalcin (OCN) also accumulated in the matrix. The osteoblasts embedded in this matrix expressed mRNAs for these bone-related proteins very strongly. Nodules of calcification were detected in the matrix and there was a correlation between calcification and the distribution of BSP and OPN. When this matrix was transplanted into a critical size bone defect in skulls of inummodeficient mice (SCID), new bone formation occurred. Furthermore, the cells inside the matrix survived and proliferated in the recipient sites, and were traceable by the human-specific Alu gene sequence using in situ hybridization. It was found that bone-forming cells differentiated from both transplanted human osteoblasts and activated endogenous mesenchymal cells. This study indicates that a mineralized matrix, formed by human osteoblasts in vitro, can be used as a scaffold for osteoblast transplantation, which subsequently can induce new bone formation.
Resumo:
Paradoxically, while peripheral self-tolerance exists for constitutively presented somatic self Ag, self-peptide recognized in the context of MHC class II has been shown to sensitize T cells for subsequent activation. We have shown that MHC class II(+)CD86(+)CD40(-) DC, which can be generated from bone marrow in the presence of an NF-kappaB inhibitor, and which constitutively populate peripheral tissues and lymphoid organs in naive animals, can induce Ag-specific tolerance. In this study, we show that CD40(-) human monocyte-derived dendritic cells (DC), generated in the presence of an NF-kappaB inhibitor, signal phosphorylation of TCRzeta, but little proliferation or IFN-gamma in vitro. Proliferation is arrested in the G(1)/G(0) phase of the cell cycle. Surprisingly, responding T cells are neither anergic nor regulatory, but are sensitized for subsequent IFN-gamma production. The data indicate that signaling through NF-kappaB determines the capacity of DC to stimulate T cell proliferation. Functionally, NF-kappaB(-)CD40(-)class II+ DC may either tolerize or sensitize T cells. Thus, while CD40(-) DC appear to prime or prepare T cells, the data imply that signals derived from other cells drive the generation either of Ag-specific regulatory or effector cells in vivo.
Resumo:
The ability to identify and manipulate stem cells has been a significant advancement in regenerative medicine and has contributed to the development of tissue engineering-based clinical therapies. Difficulties associated with achieving predictable periodontal regeneration, means that novel techniques such as tissue engineering need to be developed in order to regenerate the extensive soft and hard tissue destruction that results from periodontitis. One of the critical requirements for a tissue engineering approach is the delivery of ex vivo expanded progenitor populations or the mobilization of endogenous progenitor cells capable of proliferating and differentiating into the required tissues. By definition, stem cells fulfill these requirements and the recent identification of stem cells within the periodontal ligament represents a significant development in the progress toward predictable periodontal regeneration. In order to explore the importance of stem cells in periodontal wound healing and regeneration, this review will examine contemporary concepts in stem cell biology, the role of periodontal ligament progenitor cells in the regenerative process, recent developments in identifying periodontal stem cells and the clinical implications of these findings.
Resumo:
Mobilization is now used worldwide to collect large numbers of hematopoietic stem and progenitor cells (HSPCs) for transplantation. Although the first mobilizing agents were discovered largely by accident, discovery of more efficient mobilizing agents will require a better understanding of the molecular mechanisms responsible. During the past 5 years, a number of mechanisms have been identified, shedding new light on the dynamics of the hematopoietic system in vivo and on the intricate relationship between hematopoiesis, innate immunity, and bone. After briefly reviewing the mechanisms by which circulating HSPCs home into the bone marrow and what keeps them there, the current knowledge of mechanisms responsible for HSPC mobilization in response to hematopoietic growth factors such as granulocyte colony-stimulating factor, chemotherapy, chemokines, and polyanions will be discussed together with current strategies developed to further increase HSPC mobilization. (c) 2006 International Society for Experimental Hematology.
Resumo:
Regenerative medicine is being heralded in a similar way as gene therapy was some 15 yr ago. it is an area of intense excitement and potential, as well as myth and disinformation. However, with the increasing rate of end-stage renal failure and limited alternatives for its treatment, we must begin to investigate seriously potential regenerative approaches for the kidney. This review defines which regenerative options there might be for renal disease, summarizes the progress that has been made to date, and investigates some of the unique obstacles to such treatments that the kidney presents. The options discussed include in situ organ repair via bone marrow recruitment or dedifferentiation; ex vivo stem cell therapies, including both autologous and nonautologous options; and bioengineering approaches for the creation of a replacement organ.
Resumo:
Renal cortical fibroblasts have key roles in mediating intercellular communication with neighboring/infiltrating cells and extracellular matrix (ECM) and maintenance of renal tissue architecture. They express a variety of cytokines, chemokines, growth factors and cell adhesion molecules, playing an active role in paracrine and autocrine interactions and regulating both fibrogenesis and the interstitial inflammatory response. They additionally have an endocrine function in the production of epoetin. Tubulointerstitial fibrosis, the common pathological consequence of renal injury, is characterized by the accumulation of extracellular matrix largely due to excessive production in parallel with reduced degradation, and activated fibroblasts characterized by a myofibroblastic phenotype. Fibroblasts in the kidney may derive from resident fibroblasts, from the circulating fibroblast population or from haemopoetic progenitor or stromal cells derived from the bone marrow. Cells exhibiting a myofibroblastic phenotype may derive from these sources and from tubular cells undergoing epithelial to mesenchymal transformation in response to renal injury. The number of interstitial myofibroblasts correlates closely with tubulointerstitial fibrosis and progressive renal failure. Hence inhibiting myofibroblast formation may be an effective strategy in attenuating the development of renal failure in kidney disease of diverse etiology. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Bone marrow mesenchymal stem cells (MSCs) promote nerve growth and functional recovery in animal models of spinal cord injury (SCI) to varying levels. The authors have tested high-content screening to examine the effects of MSC-conditioned medium (MSC-CM) on neurite outgrowth from the human neuroblastoma cell line SH-SY5Y and from explants of chick dorsal root ganglia (DRG). These analyses were compared to previously published methods that involved hand-tracing individual neurites. Both methods demonstrated that MSC-CM promoted neurite outgrowth. Each showed the proportion of SH-SY5Y cells with neurites increased by ~200% in MSC-CM within 48 h, and the number of neurites/SH-SY5Y cells was significantly increased in MSC-CM compared with control medium. For high-content screening, the analysis was performed within minutes, testing multiple samples of MSC-CM and in each case measuring >15,000 SH-SY5Y cells. In contrast, the manual measurement of neurite outgrowth from >200 SH-SY5Y cells in a single sample of MSC-CM took at least 1 h. High-content analysis provided additional measures of increased neurite branching in MSC-CM compared with control medium. MSC-CM was also found to stimulate neurite outgrowth in DRG explants using either method. The application of the high-content analysis was less well optimized for measuring neurite outgrowth from DRG explants than from SH-SY5Y cells.
Resumo:
The delicately orchestrated process of bone fracture healing is not always successful and long term non union of fractured bone occurs in 5-20% of all cases. Atrophic fracture non unions have been described as the most difficult to treat and this is thought to arise through a cellular and local failure of osteogenesis. However, little is known about the presence and osteogenic proficiency of cells in the local area of non union tissue. We have examined the growth and differentiation potential of cells isolated from human non union tissues compared with normal human bone marrow mesenchymal stromal cells (BMSC). We report the isolation and culture expansion of a population of non union stromal cells (NUSC) which have a CD profile similar to that of BMSC, i.e. CD34-ve, CD45-ve and CD105+ve. The NUSC demonstrated multipotentiality and differentiated to some extent along chondrogenic, adipogenic and osteogenic lineages. However, and importantly, the NUSC showed significantly reduced osteogenic differentiation and mineralization in vitro compared to BMSC. We also found increased levels of cell senescence in NUSC compared to BMSC based on culture growth kinetics and cell positivity for senescence associated beta galactosidase (SA-beta-Gal) activity. The reduced capacity of NUSC to form osteoblasts was associated with significantly elevated secretion of Dickkopf-1 (Dkk-1) which is an important inhibitor of Wnt signalling during osteogenesis, compared to BMSC. Conversely, treating BMSC with levels of rhDkk-1 that were equivalent to those levels secreted by NUSC inhibited the capacity of BMSC to undergo osteogenesis. Treating BMSC with NUSC conditioned medium also inhibited the capacity of the BMSC to undergo osteogenic differentiation when compared to their treatment with BMSC conditioned medium. Our results suggest that the development of fracture non union is linked with a localised reduced capacity of cells to undergo osteogenesis, which in turn is associated with increased cell senescence and Dkk-1 secretion.
Resumo:
The intestinal tract is exposed to a large variety of antigens such as food proteins, commensal bacteria and pathogens and contains one of the largest arms of the immune system. The intestinal immune system has to discriminate between harmless and harmful antigens, inducing tolerance to harmless antigens and active immunity towards pathogens and other harmful materials. Dendritic cells (DC) in the mucosal lamina propria (LP) are central to this process, as they sample bacteria from the local environment and constitutively migrate to the draining mesenteric lymph nodes (MLN), where they present antigen to naïve T cells in order to direct an appropriate immune response. Despite their crucial role, understanding the function and phenotype of LP DC has been hampered by the fact that they share phenotypic markers with macrophages (mφ), which are the dominant population of mononuclear phagocyte (MP) in the LP. Recent work in our own and other laboratories has established gating strategies and phenotyping panels that allow precise discrimination between intestinal DC and mφ using the mφ specific markers CD64 and F4/80. In this way four bona fide DC subsets with distinct functions have been identified in adult LP based on their expression of CD11b and CD103 and a major aim of my project was to understand how these subsets might develop in the neonatal intestine. At the beginning of my PhD, the laboratory had used these new methods to show that signal regulatory protein α (SIRPα), an inhibitory receptor expressed by myeloid cells, was expressed by mφ and most DC in the intestine, except for those expressing CD103 alone. In addition, mice carrying a non-signalling mutation in SIRPα (SIRPα mt) had a selective reduction in CD103+CD11b+ DC, a subset which is unique to the intestinal LP. This was the basis for the initial experiments of my project, described in Chapter 3, where I investigated if the phenotype in SIRPα mt mice was intrinsic to haematopoietic cells or not. To explore this, I generated bone marrow (BM) chimeric mice by reconstituting irradiated WT mice with SIRPα mt BM, or SIRPα mt animals with WT BM. These experiments suggested that the defect in CD103+CD11b+ DC was not replicated in DC derived from BM of SIRPα origin. However as this seemed inconsistent with other data, I considered the possibility that 18 the phenotype may have been lost with age, as the BM chimeric mice were considerably older than those used in the original studies of SIRPα function. However a comparison of DC subsets in the intestine of WT and SIRPα mt mice as they aged provided no conclusive evidence to support this idea. As these experiments did show age-dependent effects on DC subsets, in Chapter 4, I went on to investigate how the DC populations appeared in the intestine and other tissues in the neonatal period. These experiments showed there were few CD103+CD11b+ DC present in the LP and migratory DC compartment of the MLN in the neonate and that as this population gradually increased in proportion with age, there was a reciprocal decrease in the relative proportion of CD103-CD11b+ DC. Interestingly, most of the changes in DC numbers in the intestine were found during the second or third week of life when the weaning process began. To validate my findings that there were few CD103+CD11b+ DC in the neonate and that this was not merely an absence of CD103 upregulation, I examined the expression of CD101 and Trem-1, markers that other work in the laboratory had suggested were specific to the CD103+CD11b+ DC lineage. My work showed that CD101 and Trem-1 were co- expressed by most CD103+CD11b+ DC in small intestine (SI) LP, as well as a small subset of CD103-CD11b+ DC in this tissue. Interestingly, Trem-1 was highly specific to the SI LP and migratory DC in the MLN, but absent from the colon and other tissues. CD101 expression was also only found on CD11b+ DC, but showed a less restricted pattern of distribution, being found in several tissues as well as the SI LP. The relative timing of their development suggested there might be a relationship between CD103+CD11b+ and CD103-CD11b+ DC and this was supported by microarray analysis. I hypothesised that the CD103-CD11b+ DC that co-expressed CD101 and Trem-1 may be the cells that developed into CD103+CD11b+ DC. To investigate this I analysed how CD101 and Trem-1 expression changed with age amongst the DC subsets in SI LP, colonic LP (CLP) and MLN. The proportion of CD101+Trem-1+ cells increased amongst CD103+CD11b+ DC in the SI LP and MLN with age, while amongst CD103+CD11b+ DC in the CLP this decreased. This was not the same in CD103-CD11b+ DC, where CD101 and Trem-1 expression was more varied with age in all tissues. CD101 and Trem-1 were not expressed to any great extent on CD103+CD11b- or CD103-CD11b- DC. The phenotypic development of the 19 intestinal DC subsets was paralleled by the gradual upregulation of CD103 expression, while the production of retinoic acid (RA), as assessed by the AldefluorTM assay, was low early in life and did not attain adult levels until after weaning. Thus DC in the neonatal intestine take some time to acquire the adult pattern of phenotypic subsets and are functionally immature compared with their adult counterparts. In Chapter 5, I used CD101 and Trem-1 to explore the ontogeny of intestinal DC subsets in CCR2-/- and SIRPα mt mice, both of which have selective defects in one particular group of DC. The selective defect seen amongst CD103+CD11b+ DC in adult SIRPα mt mice was more profound in mice at D7 and D14 of age, indicating that it may be intrinsic to this population and not highly dependent on environmental factors that change after birth. The expression of CD101 and Trem-1 by both CD103+CD11b+ and CD103-CD11b+ DC was reduced in SIRPα mt mice, again indicating that this entire lineage was affected by the lack of SIRPα signalling. However there was also a generalised defect in the numbers of all DC subsets in many tissues from early in life, suggesting there was compromised development, recruitment or survival of DC in the absence of SIRPα signalling. In contrast to the findings in SIRPα mt mice, more CD103+CD11b+ DC co-expressed CD101 and Trem-1 in CCR2-/- mice, while there were no differences in the expression of these molecules amongst CD103-CD11b+ DC. This may suggest that CCR2+ CD103-CD11b+ DC are not the cells that express CD101 and Trem-1 that are predicted to be the direct precursors of CD103+CD11b+ DC. I also examined the expression of DC growth factor receptors on DC subsets from mice of different ages, but no clear age or subset- related patterns of the expression of mRNA for Csf2ra, Irf4, Tgfbr1 and Rara could be observed. Next, I investigated whether Trem-1 played any role in DC development. Preliminary experiments in Trem-1-/- mice show no differences between any of the DC subsets, nor were there any selective effects on individual subsets when DC development from Trem-1-/- KO and WT BM was compared in competitive chimeras. However these experiments were difficult to interpret due to viability problems and because I found an unexpected defect in the ability of Trem-1-/- BM to generate all DC, irrespective of whether they expressed Trem-1 or not. 20 The final experiments I carried out were to examine the role of the microbiota in driving the differentiation of intestinal DC subsets, based on the hypothesis that this could be one of the environmental factors that might influence events in the developing intestine. To this end I performed experiments in both antibiotic treated and germ free adult mice, both of which showed no significant phenotypic differences amongst any of the DC subsets. However the study of germ free mice was compromised by recent contamination of the colony and may not be the conclusive answer. Together the data in this thesis have shown that the population of CD103+CD11b+ DC, which is unique to the intestine, is not present at birth. These cells gradually increase in frequency over time and as this occurs there is a reciprocal decrease in the frequency of CD103-CD11b+ DC. Along with other results, this leads to the idea that there may be a linear developmental pathway from CD103-CD11b+ DC to CD103+CD11b+ DC that is driven by non-microbial factors that are located preferentially in the small intestine. My project indicates that markers such as CD101 and Trem-1 may assist the dissection of this process and highlights the importance of the neonatal period for these events.
Resumo:
Type 1 diabetes affects over 108,000 children, and this number is steadily increasing. Current insulin therapies help manage the disease but are not a cure. Over a child’s lifetime they can develop kidney disease, blindness, cardiovascular disease and many other issues due to the complications of type 1 diabetes. This autoimmune disease destroys beta cells located in the pancreas, which are used to regulate glucose levels in the body. Because there is no cure and many children are affected by the disease there is a need for alternative therapeutic options that can lead to a cure. Human mesenchymal stem cells (hMSCs) are an important cell source for stem cell therapeutics due to their differentiation capacity, self-renewal, and trophic activity. hMSCs are readily available in the bone marrow, and act as an internal repair system within the body, and they have been shown to differentiate into insulin producing cells. However, after isolation hMSCs are a heterogeneous cell population, which requires secondary processing. To resolve the heterogeneity issue hMSCs are separated using fluorescent- and magnetic-activate cell sorting with antigen labeling. These techniques are efficient but reduce cell viability after separation due to the cell labeling. Therefore, to make hMSCs more readily available for type 1 diabetes therapeutics, they should be separated without diminishing there functional capabilities. Dielectrophoresis is an alternative separation technique that has the capability to separated hMSCs. This dissertation uses dielectrophoresis to characterize the dielectric properties of hMSCs. The goal is to use hMSCs dielectric signature as a separation criteria rather than the antigen labeling implemented with FACS and MACS. DEP has been used to characterize other cell systems, and is a viable separation technique for hMSCs.
Resumo:
Oropouche virus (OROV) is a member of the Orthobunyavirus genus in the Bunyaviridae family and a prominent cause of insect-transmitted viral disease in Central and South America. Despite its clinical relevance, little is known about OROV pathogenesis. To define the host defense pathways that control OROV infection and disease, we evaluated OROV pathogenesis and immune responses in primary cells and mice that were deficient in the RIG-I-like receptor signaling pathway (MDA5, RIG-I, or MAVS), downstream regulatory transcription factors (IRF-3 or IRF-7), IFN-β, or the receptor for type I IFN signaling (IFNAR). OROV replicated to higher levels in primary fibroblasts and dendritic cells lacking MAVS signaling, the transcription factors IRF-3 and IRF-7, or IFNAR. In mice, deletion of IFNAR, MAVS, or IRF-3 and IRF-7 resulted in uncontrolled OROV replication, hypercytokinemia, extensive liver damage, and death whereas wild-type (WT) congenic animals failed to develop disease. Unexpectedly, mice with a selective deletion of IFNAR on myeloid cells (CD11c Cre(+) Ifnar(f/f) or LysM Cre(+) Ifnar(f/f)) did not sustain enhanced disease with OROV or La Crosse virus, a closely related encephalitic orthobunyavirus. In bone marrow chimera studies, recipient irradiated Ifnar(-/-) mice reconstituted with WT hematopoietic cells sustained high levels of OROV replication and liver damage, whereas WT mice reconstituted with Ifnar(-/-) bone marrow were resistant to disease. Collectively, these results establish a dominant protective role for MAVS, IRF-3 and IRF-7, and IFNAR in restricting OROV virus infection and tissue injury, and suggest that IFN signaling in non-myeloid cells contributes to the host defense against orthobunyaviruses. Oropouche virus (OROV) is an emerging arthropod-transmitted orthobunyavirus that causes episodic outbreaks of a debilitating febrile illness in humans in countries of South and Central America. The continued expansion of the range and number of its arthropod vectors increases the likelihood that OROV will spread into new regions. At present, the pathogenesis of OROV in humans or other vertebrate animals remains poorly understood. To define cellular mechanisms of control of OROV infection, we performed infection studies in a series of primary cells and mice that were deficient in key innate immune genes involved in pathogen recognition and control. Our results establish that a MAVS-dependent type I IFN signaling pathway has a dominant role in restricting OROV infection and pathogenesis in vivo.
Resumo:
Vasodilator-stimulated phosphoprotein (VASP) and Zyxin are interacting proteins involved in cellular adhesion and motility. PKA phosphorylates VASP at serine 157, regulating VASP cellular functions. VASP interacts with ABL and is a substrate of the BCR-ABL oncoprotein. The presence of BCR-ABL protein drives oncogenesis in patients with chronic myeloid leukemia (CML) due to a constitutive activation of tyrosine kinase activity. However, the function of VASP and Zyxin in BCR-ABL pathway and the role of VASP in CML cells remain unknown. In vitro experiments using K562 cells showed the involvement of VASP in BCR-ABL signaling. VASP and Zyxin inhibition decreased the expression of anti-apoptotic proteins, BCL2 and BCL-XL. Imatinib induced an increase in phosphorylation at Ser157 of VASP and decreased VASP and BCR-ABL interaction. VASP did not interact with Zyxin in K562 cells; however, after Imatinib treatment, this interaction was restored. Corroborating our data, we demonstrated the absence of phosphorylation at Ser157 in VASP in the bone marrow of CML patients, in contrast to healthy donors. Phosphorylation of VASP on Ser157 was restored in Imatinib responsive patients though not in the resistant patients. Therefore, we herein identified a possible role of VASP in CML pathogenesis, through the regulation of BCR-ABL effector proteins or the absence of phosphorylation at Ser157 in VASP.
Resumo:
Em 1999, as células-tronco foram eleitas "Scientific Breakthrough of the Year" (avanço científico do ano) pela revista Science¹. Naquele ano, foi demonstrado que células-tronco de tecidos adultos mantinham a capacidade de se diferenciar em outros tipos de tecidos. No ano anterior, as primeiras linhagens de células-tronco embrionárias humanas foram estabelecidas. Desde então, o número de artigos científicos sobre células-tronco vem crescendo exponencialmente, onde novos paradigmas são estabelecidos. Neste artigo, farei uma revisão da área de células-tronco com um foco especial em seu uso como agente terapêutico em doenças comuns como diabetes e cardiopatias. As células-tronco serão tratadas em dois grupos distintos: as embrionárias e as adultas. Enquanto o potencial de diferenciação das primeiras está bem caracterizado em camundongos e em humanos, seu uso em terapia celular e em pesquisa tem sido dificultado por questões de histocompatibilidade, segurança e ética. Em contraste, células-tronco adultas não apresentam estes empecilhos, apesar da extensão de sua plasticidade ainda estar sob investigação. Mesmo assim, diversos testes clínicos em humanos estão em andamento utilizando células-tronco adultas, principalmente derivadas da medula óssea. Discutirei ainda a importância de se trabalhar com as duas classes de células-tronco humanas de forma a se cumprir suas promessas terapêuticas.
Resumo:
Sepsis is a systemic inflammatory response that can lead to tissue damage and death. In order to increase our understanding of sepsis, experimental models are needed that produce relevant immune and inflammatory responses during a septic event. We describe a lipopolysaccharide tolerance mouse model to characterize the cellular and molecular alterations of immune cells during sepsis. The model presents a typical lipopolysaccharide tolerance pattern in which tolerance is related to decreased production and secretion of cytokines after a subsequent exposure to a lethal dose of lipopolysaccharide. The initial lipopolysaccharide exposure also altered the expression patterns of cytokines and was followed by an 8- and a 1.5-fold increase in the T helper 1 and 2 cell subpopulations. Behavioral data indicate a decrease in spontaneous activity and an increase in body temperature following exposure to lipopolysaccharide. In contrast, tolerant animals maintained production of reactive oxygen species and nitric oxide when terminally challenged by cecal ligation and puncture (CLP). Survival study after CLP showed protection in tolerant compared to naive animals. Spleen mass increased in tolerant animals followed by increases of B lymphocytes and subpopulation Th1 cells. An increase in the number of stem cells was found in spleen and bone marrow. We also showed that administration of spleen or bone marrow cells from tolerant to naive animals transfers the acquired resistance status. In conclusion, lipopolysaccharide tolerance is a natural reprogramming of the immune system that increases the number of immune cells, particularly T helper 1 cells, and does not reduce oxidative stress.
Resumo:
Paracoccidioidomycosis (PCM), endemic in Latin America, is a progressive systemic mycosis caused by Paracoccidioides brasiliensis (P. brasiliensis), which primarily attacks lung tissue. Dendritic cells (DCs) are able to initiate a response in naive T cells, and they also participate in Th-cell education. Furthermore, these cells have been used for therapy in several disease models. Here we transfected DCs with a plasmid (pMAC/PS-scFv) encoding a single chain variable fragment (scFv) of an anti-Id antibody that is capable of mimicking gp43, the main antigenic component of P. brasiliensis. First, Balb/c mice were immunized subcutaneously with pMAC/PS-scFv and, after seven days, scFv protein was presented to the regional lymph nodes cells. Moreover, we showed that the DCs transfected with scFv were capable of efficiently activating proliferation of total lymph node cells and inducing a decrease in lung infection. Therefore, our results suggested that the use of scFv-transfected DCs may be a promising therapy in the paracoccidioidomycosis (PCM) model.