940 resultados para bone and teeth elemental analysis
Resumo:
The main purpose of the present study is to determine if the circadian rhythms present in the human bone marrow are likely to influence 3’- deoxy- 3’-[18F] Fluorothymidine (18F-FLT) uptake in the same organ. The 18F-FLT is a Thymidine analogous proliferation agent. The relatively high physiological uptake of this tracer in the bone marrow diminishes the Tumor/Background (T/B) ratio, decreasing the detection accuracy of PET/CT and possibly affecting SUV quantifications.
Resumo:
Theropods form a highly successful and morphologically diversified group of dinosaurs that gave rise to birds. They include most, if not all, carnivorous dinosaurs, yet many theropod clades were secondarily adapted to piscivory, omnivory and herbivory, and theropods show a large array of skull and dentition morphologies. This work aims to investigate aspects of the evolution of theropod dinosaurs by analyzing in detail both the anatomy and ontogeny of teeth and quadrates in non-avian theropods, and by studying embryonic and adult material of a new species of theropod. A standardized list of terms and notations for each anatomical entity of the tooth, quadrate, and maxilla is here proposed with the goal of facilitating descriptions of these important cranial and dental elements. The distribution of thirty dental characters among 113 theropod taxa is investigated, and a list of diagnostic dental characters is proposed. As an example, four isolated theropod teeth from the Lourinhã Formation (Kimmeridgian‒Tithonian) of Portugal are described and identified based on a cladistic analysis performed on a data matrix of 141 dentition-based characters coded in 60 taxa. Two shed teeth are referred to an abelisaurid, providing the first record of Abelisauridae in the Jurassic of Laurasia and the one of the oldest records of this clade in the world, suggesting a possible radiation of Abelisauridae in Europe well before the Upper Cretaceous. The consensus tree resulting from this phylogenetic analysis, the most extensive on theropod teeth, indicates that theropod teeth provide reliable data for identification at approximately family level, and this method will help identifying theropod teeth with more confidence. A detailed description of the dentition of Megalosauridae is also provided, and a discriminant analysis performed on a dataset of numerical data collected on the teeth of 62 theropod taxa reveals that megalosaurid teeth are hardly distinguishable from other theropod clades with ziphodont dentition. This study highlights the importance of detailing anatomical descriptions and providing additional morphometric data on teeth with the purpose of helping to identify isolated theropod teeth. In order to evaluate the phylogenetic potential and investigate the evolutionary transformations of the quadrate, a phylogenetic morphometric analysis as well as a cladistic analysis using 98 discrete quadrate related characters were conducted. The quadrate morphology by its own provides a wealth of data with strong phylogenetic signal, and the phylogenetic morphometric analysis reveals two main morphotypes of the mandibular articulation of the quadrate linked to function. As an example, six isolated quadrates from the Kem Kem beds (Cenomanian) of Morocco are determined to be from juvenile and adult individuals of Spinosaurinae based on phylogenetic, morphometric, and phylogenetic morphometric analyses. Morphofunctional analysis of the spinosaurid mandibular articulation has shown that the posterior parts of the two mandibular rami displaced laterally when the jaw was depressed due to a mediolaterally oriented intercondylar sulcus of the quadrate. Such lateral movement of the mandibular ramus was possible due to a movable mandibular symphysis in spinosaurids, allowing the pharynx to be widened. A new species of theropod from the Lourinhã Formation of Portugal, Torvosaurus gurneyi, is erected based on a right maxilla and an incomplete caudal centrum. This taxon supports the mechanism of vicariance that occurred in the Iberian Meseta during the Late Jurassic when the proto-Atlantic was already well formed. A theropod clutch containing several crushed eggs and embryonic material is also assigned to this new species of Torvosaurus. Investigation on the maxilla ontogeny in basal tetanurans reveals that crown denticles, elongation of the anterior ramus, and fusion of interdental plates appear at a posthatchling stage. On the other hand, maxillary pneumaticity is already present at an embryonic stage in non-avian theropods.
Resumo:
Programa Doutoral em Engenharia Biomédica
Resumo:
Studies evaluating the mechanical behavior of the trabecular microstructure play an important role in our understanding of pathologies such as osteoporosis, and in increasing our understanding of bone fracture and bone adaptation. Understanding of such behavior in bone is important for predicting and providing early treatment of fractures. The objective of this study is to present a numerical model for studying the initiation and accumulation of trabecular bone microdamage in both the pre- and post-yield regions. A sub-region of human vertebral trabecular bone was analyzed using a uniformly loaded anatomically accurate microstructural three-dimensional finite element model. The evolution of trabecular bone microdamage was governed using a non-linear, modulus reduction, perfect damage approach derived from a generalized plasticity stress-strain law. The model introduced in this paper establishes a history of microdamage evolution in both the pre- and post-yield regions
Resumo:
Meta-analysis of prospective studies shows that quantitative ultrasound of the heel using validated devices predicts risk of different types of fracture with similar performance across different devices and in elderly men and women. These predictions are independent of the risk estimates from hip DXA measures.Introduction Clinical utilisation of heel quantitative ultrasound (QUS) depends on its power to predict clinical fractures. This is particularly important in settings that have no access to DXA-derived bone density measurements. We aimed to assess the predictive power of heel QUS for fractures using a meta-analysis approach.Methods We conducted an inverse variance random effects meta-analysis of prospective studies with heel QUS measures at baseline and fracture outcomes in their follow-up. Relative risks (RR) per standard deviation (SD) of different QUS parameters (broadband ultrasound attenuation [BUA], speed of sound [SOS], stiffness index [SI], and quantitative ultrasound index [QUI]) for various fracture outcomes (hip, vertebral, any clinical, any osteoporotic and major osteoporotic fractures) were reported based on study questions.Results Twenty-one studies including 55,164 women and 13,742 men were included in the meta-analysis with a total follow-up of 279,124 person-years. All four QUS parameters were associated with risk of different fracture. For instance, RR of hip fracture for 1 SD decrease of BUA was 1.69 (95% CI 1.43-2.00), SOS was 1.96 (95% CI 1.64-2.34), SI was 2.26 (95%CI 1.71-2.99) and QUI was 1.99 (95% CI 1.49-2.67). There was marked heterogeneity among studies on hip and any clinical fractures but no evidence of publication bias amongst them. Validated devices from different manufacturers predicted fracture risks with similar performance (meta-regression p values > 0.05 for difference of devices). QUS measures predicted fracture with a similar performance in men and women. Meta-analysis of studies with QUS measures adjusted for hip BMD showed a significant and independent association with fracture risk (RR/SD for BUA = 1.34 [95%CI 1.22-1.49]).Conclusions This study confirms that heel QUS, using validated devices, predicts risk of different fracture outcomes in elderly men and women. Further research is needed for more widespread utilisation of the heel QUS in clinical settings across the world.
Resumo:
The consumption of mineral waters is increasing in industrialised countries. High intakes of Ca and other alkalising cations as well as a low acid intake are beneficial to bone. We examined which components of mineral waters are conditioning their Ca content and their alkalinising power, in order to define the optimal profile. European mineral waters were randomly selected on the Internet: 100 waters with less than 200 mg Ca/l (9.98 mEq/l) and fifty with more than 200 mg/l, all with complete data for SO4, P, Cl, Na, K, Mg and Ca, and most also for HCO3. For comparison, forty North American mineral waters were randomly chosen. The potential renal acid load (PRAL) was calculated for each mineral water. North American waters did not reveal significant results because of their low mineralisation. We performed correlations between all eight components in order to explore the properties of the mineral waters. In the European waters, twenty-six out of twenty-eight correlations showed a P value of <or= 0.01. In waters with PRAL >0 (acidifying waters), PRAL was positively correlated with SO4, Ca, K and Mg (P < 0.001). In those with PRAL < 0 (alkalinising waters), PRAL was negatively correlated with HCO3, Na, Mg, Ca, K, Cl and SO4 (P < 0.001). SO4 and HCO3 were not found together in high quantities in the same water for geochemical reasons. A high Ca content is associated with either a high SO4 or a high HCO3 content. SO4 theoretically increases Ca excretion, while HCO3 and low PRAL values are associated with positive effects on bone. Therefore, the best waters for bone health are rich in both HCO3 and Ca, and by consequence low in SO4.
Resumo:
Bone loss secondary to inflammatory bowel diseases (IBD) is largely explained by activated T cells producing cytokines that trigger osteoclastogenesis and accelerate bone resorptionwhile inhibiting bone formation. In IBD, elevated expression of interleukin (IL)-15, a T cell growth factor, plays a central role in T cell activation, pro-inflammatory cytokine production and the development of colitis. We previously reported that IL-15 enhances RANKL-induced osteoclastogenesis and that an IL-15 antagonist, CRB-15, prevents weight and bone loss in a mousemodel of dextran sulfate sodium-induced colitis.We hypothesized that inhibition of IL-15 signalingmight prevent bone loss in IL-10 deficient (IL10−/−) mice, that develop spontaneous bowel inflammation associatedwith osteopeniawhen they are no longer raised under germ-free conditions.Mice received anIL-15 antagonist (CRB-15, 5 μg/day, n=5) or IgG2a (5 μg/day, n=4) fromweek 10 to 14 of age. The severity of colitis was assessed by histology and bowel cytokine gene expression by real time PCR. Bone mass and architecturewere evaluated by ex vivo DXA on femur and micro-computed tomography on femur and vertebra. Bodyweight gainwas similar in the two groups. After 4 weeks, colonwas 29% shorter in CRB-15 treatedmice (p<0.006), a sign of reduced inflammation. Histological analysis indicated a transmural infiltration of inflammatory cells, lymphoepithelial lesions and increased size of villi (histological score=4/6) in IgG2a treated mice, whereas colon from CRB-15 treated mice exhibited mild infiltration of inflammatory cells of the lamina propria, no mucosal damages and a minimal increased size of villi (histological score=1.6/6). Levels of TNFα, IL-17 and IL-6 mRNA in the colon were significantly reduced in CRB-15 treated mice (p<0.04 vs IgG2), indicating a decrease in colon inflammation. CRB-15 improved femur BMD (+10.6% vs IgG2a, p<0.002), vertebral trabecular bone volume fraction (BV/TV, +19.7% vs IgG2a, p<0.05) and thickness (+11.6% vs IgG2a, p<0.02). A modest but not significant increase in trabecular BV/TV was observed at the distal femur. Cortical thicknesswas also higher at themidshaft femur in CRB-15 treatedmice (+8.3% vs IgG2a, p<0.02). In conclusion, we confirm and extend our results about the effects of CRB-15 in colitis. Antagonizing IL-15 may exert favorable effects on intestinal inflammation and prevent bone loss and microarchitecture alterations induced by colitis. This article is part of a Special Issue entitled ECTS 2011. Disclosure of interest: B. Brounais-Le Royer Grant / Research Support from Novartis Consumer Health Foundation, S. Ferrari-Lacraz: none declared, D. Velin: none declared, X. Zheng: none declared, S. Ferrari: none declared, D. Pierroz: none declared.
Resumo:
Several recent studies suggest that obesity may be a risk factor for fracture. The aim of this study was to investigate the association between body mass index (BMI) and future fracture risk at different skeletal sites. In prospective cohorts from more than 25 countries, baseline data on BMI were available in 398,610 women with an average age of 63 (range, 20-105) years and follow up of 2.2 million person-years during which 30,280 osteoporotic fractures (6457 hip fractures) occurred. Femoral neck BMD was measured in 108,267 of these women. Obesity (BMI ≥ 30 kg/m(2) ) was present in 22%. A majority of osteoporotic fractures (81%) and hip fractures (87%) arose in non-obese women. Compared to a BMI of 25 kg/m(2) , the hazard ratio (HR) for osteoporotic fracture at a BMI of 35 kg/m(2) was 0.87 (95% confidence interval [CI], 0.85-0.90). When adjusted for bone mineral density (BMD), however, the same comparison showed that the HR for osteoporotic fracture was increased (HR, 1.16; 95% CI, 1.09-1.23). Low BMI is a risk factor for hip and all osteoporotic fracture, but is a protective factor for lower leg fracture, whereas high BMI is a risk factor for upper arm (humerus and elbow) fracture. When adjusted for BMD, low BMI remained a risk factor for hip fracture but was protective for osteoporotic fracture, tibia and fibula fracture, distal forearm fracture, and upper arm fracture. When adjusted for BMD, high BMI remained a risk factor for upper arm fracture but was also a risk factor for all osteoporotic fractures. The association between BMI and fracture risk is complex, differs across skeletal sites, and is modified by the interaction between BMI and BMD. At a population level, high BMI remains a protective factor for most sites of fragility fracture. The contribution of increasing population rates of obesity to apparent decreases in fracture rates should be explored. © 2014 American Society for Bone and Mineral Research.
Resumo:
X-ray is a technology that is used for numerous applications in the medical field. The process of X-ray projection gives a 2-dimension (2D) grey-level texture from a 3- dimension (3D) object. Until now no clear demonstration or correlation has positioned the 2D texture analysis as a valid indirect evaluation of the 3D microarchitecture. TBS is a new texture parameter based on the measure of the experimental variogram. TBS evaluates the variation between 2D image grey-levels. The aim of this study was to evaluate existing correlations between 3D bone microarchitecture parameters - evaluated from μCT reconstructions - and the TBS value, calculated on 2D projected images. 30 dried human cadaveric vertebrae were acquired on a micro-scanner (eXplorer Locus, GE) at isotropic resolution of 93 μm. 3D vertebral body models were used. The following 3D microarchitecture parameters were used: Bone volume fraction (BV/TV), Trabecular thickness (TbTh), trabecular space (TbSp), trabecular number (TbN) and connectivity density (ConnD). 3D/2D projections has been done by taking into account the Beer-Lambert Law at X-ray energy of 50, 100, 150 KeV. TBS was assessed on 2D projected images. Correlations between TBS and the 3D microarchitecture parameters were evaluated using a linear regression analysis. Paired T-test is used to assess the X-ray energy effects on TBS. Multiple linear regressions (backward) were used to evaluate relationships between TBS and 3D microarchitecture parameters using a bootstrap process. BV/TV of the sample ranged from 18.5 to 37.6% with an average value at 28.8%. Correlations' analysis showedthat TBSwere strongly correlatedwith ConnD(0.856≤r≤0.862; p<0.001),with TbN (0.805≤r≤0.810; p<0.001) and negatively with TbSp (−0.714≤r≤−0.726; p<0.001), regardless X-ray energy. Results show that lower TBS values are related to "degraded" microarchitecture, with low ConnD, low TbN and a high TbSp. The opposite is also true. X-ray energy has no effect onTBS neither on the correlations betweenTBS and the 3Dmicroarchitecture parameters. In this study, we demonstrated that TBS was significantly correlated with 3D microarchitecture parameters ConnD and TbN, and negatively with TbSp, no matter what X-ray energy has been used. This article is part of a Special Issue entitled ECTS 2011. Disclosure of interest: None declared.
Resumo:
OBJECTIVE: When we examined a previously published prospective multi-center clinical trial in which complete denture-wearers were followed over a period of 2 years, we found that about 30% of the variability in the clinical wear data of denture teeth was due to unknown characteristics of the subjects. In the second part of the study, we try to identify which patient- and therapy-related factors may explain some of this variability. METHODS: The clinical wear data of denture teeth at different recall times (6, 12, 18, 24 months) in 89 subjects (at baseline) were correlated with the following parameters, which may all have an influence on the wear of denture teeth: age, gender, bruxism as reported by the subjects, number of prostheses used so far, time since last extraction, smoking, fit of dentures as judged by the subject and the clinician, average denture wearing time and wearing of denture during the night. To evaluate the influence of the different patient- and therapy-related variables, both a univariate analysis (one extra factor to the model) and a multivariate analysis were carried out using linear mixed models with the variable Log mean as the outcome. RESULTS: None of the patient- and therapy-related parameters showed a statistically significant effect on the wear of denture teeth. There was, however, a trend for women to show less wear compared to men and a trend of decreasing wear with increasing age. SIGNIFICANCE: Further research is required to identify the factors which are responsible for the high variability observed between the subjects regarding clinical wear data.
Resumo:
Supplementation of elderly institutionalized women with vitamin D and calcium decreased hip fractures and increased hip bone mineral density. Quantitative ultrasound (QUS) measurements can be performed in nursing homes, and easily repeated for follow-up. However, the effect of the correction of vitamin D deficiency on QUS parameters is not known. Therefore, 248 institutionalized women aged 62-98 years were included in a 2-year open controlled study. They were randomized into a treated group (n = 124), receiving 440 IU of vitamin D3 combined with 500 mg calcium (1250 mg calcium carbonate, Novartis) twice daily, and a control group (n = 124). One hundred and three women (42%), aged 84.5 +/- 7.5 years, completed the study: 50 in the treated group, 53 in the controls. QUS of the calcaneus, which measures BUA (broadband ultrasound attenuation) and SOS (speed of sound), and biochemical analysis were performed before and after 1 and 2 years of treatment. Only the results of the women with a complete follow-up were taken into account. Both groups had low initial mean serum 25-hydroxyvitamin D levels (11.9 +/- 1.2 and 11.7 +/- 1.2 micrograms/l; normal range 6.4-40.2 micrograms/l) and normal mean serum parathyroid hormone (PTH) levels (43.1 +/- 3.2 and 44.6 +/- 3.5 ng/l; normal range 10-70 ng/l, normal mean 31.8 +/- 2.3 ng/l). The treatment led to a correction of the metabolic disturbances, with an increase in 25-hydroxyvitamin D by 123% (p < 0.01) and a decrease in PTH by 18% (p < 0.05) and of alkaline phosphatase by 15% (p < 0.01). In the controls there was a worsening of the hypovitaminosis D, with a decrease of 25-hydroxyvitamin D by 51% (p < 0.01) and an increase in PTH by 51% (p < 0.01), while the serum calcium level decreased by only 2% (p < 0.01). After 2 years of treatment BUA increased significantly by 1.6% in the treated group (p < 0.05), and decreased by 2.3% in the controls (p < 0.01). Therefore, the difference in BUA between the treated subjects and the controls (3.9%) was significant after 2 years (p < 0.01). However, SOS decreased by the same amount in both groups (approximately 0.5%). In conclusion, BUA, but not SOS, reflected the positive effect on bone of supplementation with calcium and vitamin D3 in a population of elderly institutionalized women.
Resumo:
This study compared the outcome of total knee replacement (TKR) in adult patients with fixed- and mobile-bearing prostheses during the first post-operative year and at five years' follow-up, using gait parameters as a new objective measure. This double-blind randomised controlled clinical trial included 55 patients with mobile-bearing (n = 26) and fixed-bearing (n = 29) prostheses of the same design, evaluated pre-operatively and post-operatively at six weeks, three months, six months, one year and five years. Each participant undertook two walking trials of 30 m and completed the EuroQol questionnaire, Western Ontario and McMaster Universities osteoarthritis index, Knee Society score, and visual analogue scales for pain and stiffness. Gait analysis was performed using five miniature angular rate sensors mounted on the trunk (sacrum), each thigh and calf. The study population was divided into two groups according to age (≤ 70 years versus > 70 years). Improvements in most gait parameters at five years' follow-up were greater for fixed-bearing TKRs in older patients (> 70 years), and greater for mobile-bearing TKRs in younger patients (≤ 70 years). These findings should be confirmed by an extended age controlled study, as the ideal choice of prosthesis might depend on the age of the patient at the time of surgery.
Resumo:
After cemented total hip arthroplasty (THA) there may be failure at either the cement-stem or the cement-bone interface. This results from the occurrence of abnormally high shear and compressive stresses within the cement and excessive relative micromovement. We therefore evaluated micromovement and stress at the cement-bone and cement-stem interfaces for a titanium and a chromium-cobalt stem. The behaviour of both implants was similar and no substantial differences were found in the size and distribution of micromovement on either interface with respect to the stiffness of the stem. Micromovement was minimal with a cement mantle 3 to 4 mm thick but then increased with greater thickness of the cement. Abnormally high micromovement occurred when the cement was thinner than 2 mm and the stem was made of titanium. The relative decrease in surface roughness augmented slipping but decreased debonding at the cement-bone interface. Shear stress at this site did not vary significantly for the different coefficients of cement-bone friction while compressive and hoop stresses within the cement increased slightly.
Resumo:
Objectives: Quantitative ultrasound (QUS) is an attractive method for assessing fracture risk because it is portable, inexpensive, without ionizing radiation, and available in areas of the world where DXA is not readily accessible or affordable. However, the diversity of QUS scanners and variability of fracture outcomes measured in different studies is an important obstacle to widespread utilisation of QUS for fracture risk assessment. We aimed in this review to assess the predictive power of heel QUS for fractures considering different characteristics of the association (QUS parameters and fracture outcomes measured, QUS devices, study populations, and independence from DXA-measured bone density).Materials/Methods : We conducted an inverse-variance randomeffects meta-analysis of prospective studies with heel QUS measures at baseline and fracture outcomes in their follow-up. Relative risks (RR) per standard deviation (SD) of different QUS parameters (broadband ultrasound attenuation [BUA], speed of sound &SOS;, stiffness index &SI;, and quantitative ultrasound index [QUI]) for various fracture outcomes (hip, vertebral, any clinical, any osteoporotic, and major osteoporotic fractures) were reported based on study questions.Results : 21 studies including 55,164 women and 13,742 men were included with a total follow-up of 279,124 person-years. All four QUS parameters were associated with risk of different fractures. For instance, RR of hip fracture for 1 SD decrease of BUA was 1.69 (95% CI 1.43-2.00), SOS was 1.96 (95% CI 1.64-2.34), SI was 2.26 (95%CI 1.71-2.99), and QUI was 1.99 (95% CI 1.49-2.67). Validated devices from different manufacturers predicted fracture risks with a similar performance (meta-regression p-values>0.05 for difference of devices). There was no sign of publication bias among the studies. QUS measures predicted fracture with a similar performance in men and women. Meta-analysis of studies with QUS measures adjusted for hip DXA showed a significant and independent association with fracture risk (RR/SD for BUA =1.34 [95%CI 1.22-1.49]).Conclusions : This study confirms that QUS of the heel using validated devices predicts risk of different fracture outcomes in elderly men and women. Further research and international collaborations are needed for standardisation of QUS parameters across various manufacturers and inclusion of QUS in fracture risk assessment tools. Disclosure of Interest : None declared.
Resumo:
This study aimed to develop a hip screening tool that combines relevant clinical risk factors (CRFs) and quantitative ultrasound (QUS) at the heel to determine the 10-yr probability of hip fractures in elderly women. The EPISEM database, comprised of approximately 13,000 women 70 yr of age, was derived from two population-based white European cohorts in France and Switzerland. All women had baseline data on CRFs and a baseline measurement of the stiffness index (SI) derived from QUS at the heel. Women were followed prospectively to identify incident fractures. Multivariate analysis was performed to determine the CRFs that contributed significantly to hip fracture risk, and these were used to generate a CRF score. Gradients of risk (GR; RR/SD change) and areas under receiver operating characteristic curves (AUC) were calculated for the CRF score, SI, and a score combining both. The 10-yr probability of hip fracture was computed for the combined model. Three hundred seven hip fractures were observed over a mean follow-up of 3.2 yr. In addition to SI, significant CRFs for hip fracture were body mass index (BMI), history of fracture, an impaired chair test, history of a recent fall, current cigarette smoking, and diabetes mellitus. The average GR for hip fracture was 2.10 per SD with the combined SI + CRF score compared with a GR of 1.77 with SI alone and of 1.52 with the CRF score alone. Thus, the use of CRFs enhanced the predictive value of SI alone. For example, in a woman 80 yr of age, the presence of two to four CRFs increased the probability of hip fracture from 16.9% to 26.6% and from 52.6% to 70.5% for SI Z-scores of +2 and -3, respectively. The combined use of CRFs and QUS SI is a promising tool to assess hip fracture probability in elderly women, especially when access to DXA is limited.