994 resultados para anti-angiogenesis
Resumo:
How persistent are cultural traits? This paper uses data on anti-Semitism in Germany and finds continuity at the local level over more than half a millennium. When the Black Death hit Europe in 1348-50, killing between one third and one half of the population, its cause was unknown. Many contemporaries blamed the Jews. Cities all over Germany witnessed mass killings of their Jewish population. At the same time, numerous Jewish communities were spared these horrors. We use plague pogroms as an indicator for medieval anti-Semitism. Pogroms during the Black Death are a strong and robust predictor of violence against Jews in the 1920s, and of votes for the Nazi Party. In addition, cities that saw medieval anti-Semitic violence also had higher deportation rates for Jews after 1933, were more likely to see synagogues damaged or destroyed in the Night of Broken Glass in 1938, and their inhabitants wrote more anti-Jewish letters to the editor of the Nazi newspaper Der Stürmer.
Resumo:
IL-2 is crucial to T cell homeostasis, especially of CD4(+) T regulatory cells and memory CD8(+) cells, as evidenced by vigorous proliferation of these cells in vivo following injections of superagonist IL-2/anti-IL-2 antibody complexes. The mechanism of IL-2/anti-IL-2 antibody complexes is unknown owing to a lack of understanding of IL-2 homeostasis. We show that IL-2 receptor alpha (CD25) plays a crucial role in IL-2 homeostasis. Thus, prolongation of IL-2 half-life and blocking of CD25 using antibodies or CD25-deficient mice led in combination, but not alone, to vigorous IL-2-mediated T cell proliferation, similar to IL-2/anti-IL-2 antibody complexes. These data suggest an unpredicted role for CD25 in IL-2 homeostasis.
Resumo:
Polyclonal rabbit anti-thymocyte globulin (rATG) is widely used in solid organ transplantation (SOT) as induction therapy or to treat corticosteroid-resistant rejection. In vivo, the effect of rATG on natural killer (NK) cells has not been studied. These cells are of particular relevance after SOT because classical immunosuppressive drugs do not inhibit or even can activate NK cells. A cohort of 20 recipients at low immunological risk, that had been receiving rATG as induction therapy, was analyzed for receptor repertoire, cytotoxicity and capacity of NK cells to secrete IFN-γ before kidney transplantation and at different time points thereafter. NK cells expressed fewer killer-cell immunoglobulin-like receptors (KIR), fewer activating receptors NKG2D, but more inhibitory receptor NKG2A compatible with an immature phenotype in the first 6 months post transplantation. Both cytotoxicity of NK cells and the secretion of IFN-γ were preserved over time after transplantation.
Resumo:
RESUME : De nombreuses espèces animales vivent en groupe. Du simple grégarisme aux colonies hautement intégrées de fourmis, la vie sociale a atteint des degrés divers de complexité. Les nombreuses interactions entre membres d'une société favorisent la transmission de parasites. Cela représente un coût potentiel de la vie sociale. Cette thèse s'intéresse aux défenses permettant de réduire le coût du parasitisme dans les colonies de fourmis ainsi qu'à la manière dont le parasitisme a pu façonner certains aspects de ces sociétés. Les colonies de fourmis des bois (Forimica paralugubris) contiennent de grandes quantités de résine de conifères. Cette résine réduit la densité microbienne dans le nid et augmente la survie des ouvrières lors d'infections parasitaires. Dans cette thèse, nous montrons, d'une part, que les ouvrières collectent activement la résine et que ce comportement est plutôt préventif que curatif et, d'autre part, que la résine permet aux ouvrières une utilisation moindre de leurs défenses immunitaires. Ces résultats permettent de conclure que ce comportement réduit l'exposition au parasitisme et qu'il a une fonction adaptative. L'émergence d'un tel comportement de médication chez une espèce d'insectes sociaux illustre le fait que la socialité, bien yue provoquant une exposition accrue au parasitisme, permet également l'émergence de mécanismes sociaux de défense. II a été suggéré que la présence de plusieurs reines au sein d'un même nid (polygynie) améliore la résistance aux parasites en augmentant la diversité génétique au sein de la colonie. En accord avec cette hypothèse, nous montrons qu'une augmentation de la diversité génétique au sein de groupes expérimentaux de Formica selysi améliore leur survie lors d'une infection parasitaire. Cependant, nous suggérons également que sur le terrain, d'autres facteurs corrélés à la polygynie ont des effets antagoniques sur la résistance. Nous montrons par exemple que les ouvrières polygynes semblent avoir une capacité moindre à monter une réponse immunitaire. Certains aspects de la reproduction des fourmis ont pu également être façonnés par le parasitisme. L'accouplement n'a lieu que lors d'une courte période au début de la vie adulte, généralement à l'extérieur de la colonie. Les reines stockent ensuite le sperme et l'utilisent parcimonieusement au cours de leur vie alors que les males meurent rapidement. Nous montrons que les défenses immunitaires des reines de fourmis des bois (F. paralugubris) sont fortement affectées par l'accouplement. Ces modulations immunitaires sont probablement liées à une augmentation de l'exposition au parasitisme lors de l'accouplement ainsi qu'à des blessures copulatoires. I1 semble donc que l'accouplement soit accompagné de coûts immunitaires pour les reines. Dans son ensemble, cette thèse illustre la diversité des mécanismes de défenses contre les parasites dans les sociétés de fourmis. La vie sociale, en offrant un nouveau niveau d'interaction, permet en effet l'émergence d'adaptations originales. Cela explique probablement le grand succès écologique des espèces sociales. SUMMARY : Sociality is widespread among animals and has reached variable degrees of complexity, from loose social Groups to highly integrated ant colonies. The many interactions between members of a social group promote the spread of parasites, but social life also permits the evolution of original defence mechanisms. This thesis sheds light on how ant colonies defend themselves against parasites, and on how parasitism shapes certain aspects of these societies. Wood ants nests (Formica paralugubris) contain large amounts of conifer resin which reduces the microbial density in ant nests and enhances the survival of ants challenged by some pathogens. We show that resin is actively collected by workers and that resin collection is rather a prophylactic than a curative behaviour. Moreover, we suggest that resin reduces the use of the immune defences of workers. Altogether, these results indicate that the use of resin is a collective adaptation to prevent the spread of parasites. The emergence of medication in a social insect species illustrates that sociality does not only increase the exposure to parasites but also allows the emergence of social mechanisms to counter this threat. The number of reproducing queens per colony is a variable trait in ants. It has been suggested that polygyny (the occurrence of multiple queens within a colony), by increasing the colonial genetic diversity, improves disease resistance. In line with this hypothesis, we show that in a socially polymorphic ant (Formica selysi), an experimental increase of colony genetic diversity enhances disease resistance. However, we also suggest that factors covarying with queen number variation in the field have antagonistic effects on parasite resistance. We show for instance that polygyne workers seem to have lower immune defences. Parasites may also shape some aspects of ant queen reproductive biology. Ant queens mate at the beginning of their adult life, usually outside of the colony, and store sperm for several years to fertilize eggs. Males die shortly after mating and queens never remate later in life, which drastically reduces sexual conflicts. Moreover, mating and nest founding occur away from the collective defence mechanisms of the natal colony and might be associated with an increased risk of parasitism. We show that mating affects the immune defences of wood ant queens (F. paralugubris) in multiple ways that are consistent with mating wounds and increased risk of parasitism. We suggest that mating is associated with immunity costs in ants, despite the reduced level of sexual conflicts. Altogether, my thesis illustrates the diversity of anti-parasite mechanisms in ant societies. This sheds light on how sociality, by offering a new level of interactions, allows the evolution of original adaptations, which may explain the wide ecological success of social species.
Resumo:
BACKGROUND: Recent evidence indicates that zoledronate, a nitrogen-containing bisphosphonate used to treat conditions of increased bone resorption, may have anti-angiogenic activity. The endothelial cells signaling events modulated by zoledronate remain largely elusive. OBJECTIVES: The aim of this work was to identify signaling events suppressed by zoledronate in endothelial cells and responsible for some of its biological effects. METHODS: Human umbilical vein endothelial cells (HUVEC) were exposed to zoledronate, isoprenoid analogs (i.e. farnesol and geranylgeraniol) and various inhibitors of signaling, and the effect on adhesion, survival, migration, actin cytoskeleton and signaling events characterized. RESULTS: Zoledronate reduced Ras prenylation, Ras and RhoA translocation to the membrane, and sustained ERK1/2 phosphorylation and tumor necrosis factor (TNF) induced JNK phosphorylation. Isoprenoid analogs attenuated zoledronate effects on HUVEC adhesion, actin stress fibers and focal adhesions, migration and survival. Isoprenoid analogs also restored Ras prenylation, RhoA translocation to the membrane, sustained FAK and ERK1/2 phosphorylation and prevented suppression of protein kinase B (PKB) and JNK phosphorylation in HUVEC exposed to TNF in the presence of zoledronate. Pharmacological inhibition of Rock, a RhoA target mediating actin fiber formation, phosphatidylinositol 3-kinase, an activator of PKB, MEK1/2, an activator of ERK1/2, and JNK, recapitulated individual zoledronate effects, consistent with the involvement of these molecules and pathways and their inhibition in the zoledronate effects. CONCLUSIONS: This work has demonstrated that zoledronate inhibits HUVEC adhesion, survival, migration and actin stress fiber formation by interfering with protein prenylation and has identified ERK1/2, JNK, Rock, FAK and PKB as kinases affected by zoledronate in a prenylation-dependent manner.
Resumo:
We have previously shown that the eye is a mineralocorticoid-sensitive organ and we now question the role of mineralocorticoid receptor (MR) in ocular inflammation. The endotoxin-induced uveitis (EIU), a rat model of human intraocular inflammation, was induced by systemic administration of lipopolysaccharide (LPS). Evaluations were made 6 and 24 hours after intraocular injection of aldosterone (simultaneous to LPS injection). Three hours after onset of EIU, the MR and the glucocorticoid metabolizing enzyme 11-beta hydroxysteroid dehydrogenase type 2 (11β-HSD2) expression were down-regulated in iris/ciliary body and the corticosterone concentration was increased in aqueous humor, altering the normal MR/glucocorticoid receptor (GR) balance. At 24 hours, the GR expression was also decreased. In EIU, aldosterone reduced the intensity of clinical inflammation in a dose-dependent manner. The clinical benefit of aldosterone was abrogated in the presence of the MR antagonist (RU26752) and only partially with the GR antagonist (RU38486). Aldosterone reduced the release of inflammatory mediators (6 and 24 hours: TNF-α, IFN-γ, MIP-1α) in aqueous humor and the number of activated microglia/macrophages. Aldosterone partly prevented the uveitis-induced MR down-regulation. These results suggest that MR expression and activation in iris/ciliary body could protect the ocular structures against damages induced by EIU.
Resumo:
The fight against doping is mainly focused on direct detection, using analytical methods for the detection of doping agents in biological samples. However, the World Anti-Doping Code also defines doping as possession, administration or attempted administration of prohibited substances or methods, trafficking or attempted trafficking in any prohibited substance or methods. As these issues correspond to criminal investigation, a forensic approach can help assessing potential violation of these rules.In the context of a rowing competition, genetic analyses were conducted on biological samples collected in infusion apparatus, bags and tubing in order to obtain DNA profiles. As no database of athletes' DNA profiles was available, the use of information from the location detection as well as contextual information were key to determine a population of suspected athletes and to obtain reference DNA profiles for comparison.Analysis of samples from infusion systems provided 8 different DNA profiles. The comparison between these profiles and 8 reference profiles from suspected athletes could not be distinguished.This case-study is one of the first where a forensic approach was applied for anti-doping purposes. Based on this investigation, the International Rowing Federation authorities decided to ban not only the incriminated athletes, but also the coaches and officials for 2 years.
Resumo:
We have recently reported that the inhibition of endothelial cell COX-2 by non-steroidal anti-inflammatory drugs suppresses alpha(V)beta(3)- (but not alpha(5)beta(1)-) dependent Rac activation, endothelial cell spreading, migration, and angiogenesis (Dormond, O., Foletti, A., Paroz, C., and Ruegg, C. (2001) Nat. Med. 7, 1041-1047). Here we investigated the role of the COX-2 metabolites PGE(2) and TXA2 in regulating human umbilical vein endothelial cell (HUVEC) adhesion and spreading. We report that PGE(2) accelerated alpha(V)beta(3)-mediated HUVEC adhesion and promoted Rac activation and cell spreading, whereas the TXA2 agonist retarded adhesion and inhibited spreading. We show that the cAMP level and the cAMP-regulated protein kinase A (PKA) activity are critical mediators of these PGE(2) effects. alpha(V)beta(3)-mediated adhesion induced a transient COX-2-dependent rise in cAMP levels, whereas the cell-permeable cAMP analogue 8-brcAMP accelerated adhesion, promoted Rac activation, and cell spreading in the presence of the COX-2 inhibitor NS-398. Pharmacological inhibition of PKA completely blocked alpha(V)beta(3)-mediated adhesion. A constitutively active Rac mutant (L61Rac) rescued alpha(V)beta(3)-dependent spreading in the presence of NS398 or, but did not accelerate adhesion, whereas a dominant negative Rac mutant (N17Rac) suppressed spreading without affecting adhesion. alpha(5)beta(1)-mediated HUVEC adhesion, Rac activation, and spreading were not affected by PGE(2), 8-brcAMP, or the inhibition of PKA. In conclusion, these results demonstrate that PGE(2) accelerates alpha(V)beta(3)-mediated endothelial cell adhesion through cAMP-dependent PKA activation and induces alpha(V)beta(3)-dependent spreading via cAMP- and PKA-dependent Rac activation and may contribute to the further understanding of the regulation of vascular integrins alpha(V)beta(3) by COX-2/PGE(2) during tumor angiogenesis and inflammation.
Resumo:
RESUME La radiothérapie est utilisée avec succès pour le traitement d'un grand nombre de pathologies tumorales (1). Cependant, les récidives post-actiniques sont associées à un risque accru de développer des métastases régionales et à distance (2, 3). La prise en charge de ce type de patients demeure insatisfaisante à l'heure actuelle, principalement parce que les mécanismes physio-pathologiques sous- sous-jacents restent mal compris. Etant donné le rôle primordial du stroma dans la progression tumorale (4) et l'importance des effets de la radiothérapie sur le micro-environnement des tumeurs (5), nous avons émis l'hypothèse que la radiothérapie pouvait engendrer des modifications stromales susceptibles de contribuer à l'émergence d'un phénotype tumoral plus agressif. Nous avons observé que l'exposition préalable d'un environnement tumoral à des radiations ionisantes engendre une inhibition locale et à long terme de l'angiogenèse. Cette inhibition conduit à la création d'un environnement tumoral hypoxique favorisant l'invasion et la métastatisation tumorale. Les mécanismes sous-jacents impliquent l'activation de gènes prométastatiques sous le contrôle du facteur de transcription HIF-1, ainsi que la sélection hypoxique de cellules hautement invasives et métastatiques. Par des analyses de profile d'expression génétique ainsi que par des analyses fonctionnelles, nous avons identifié la protéine matri-cellulaire CYR61 ainsi que ses partenaires d'interaction, les intégrines aVb5/aVb3, comme médiateurs importants de ces effets. De plus, une corrélation significative a également été trouvée entre le niveau d'expression de CYR61 et le taux d'hypoxie dans un grand nombre de carcinomes mammaires chez l'humain. Une association a aussi été observée entre le niveau d'expression de CYR61 et le pronostic de patientes souffrant d'un cancer du sein traité par chimiothérapie adjuvante. Globalement ces résultats identifient l'interaction entre la protéine CYR61 et ses récepteurs aVb5/aVb3 comme un mécanisme important du processus de métastatisation et en font une cible thérapeutique potentielle pour le traitement de patients souffrant d'une récidive tumorale après un traitement de radiothérapie. Finalement, bien que l'inhibition de l'angiogenèse soit locale dans ce cas particulier, nos résultats justifient une surveillance particulière des patients souffrant d'une pathologie tumorale et étant au bénéfice d'un traitement inhibiteur de l'angiogenèse. SUMMARY Radiotherapy is successfully used to treat a large variety of tumours (1 ). However, cancer patients experiencing local recurrent disease after radiation therapy are at increased risk of developing regional and distant metastasis (2, 3). The clinical management of this condition represents a difficult and challenging issue, mainly because the underlying physio-pathological mechanisms remain poorly understood. Given the well established role of the tumour stroma in promoting cancer progression (4) and since radiotherapy is known to persistently alter the tumour microenvironment (5), we hypothesized that ionising radiations may generate stromal modifications contributing to the metastatic spread of relapsing tumours. Here, we report that irradiation of the prospective tumour microenvironment promotes tumour invasion and metastasis through a mechanism of local and sustained impairment of angiogenesis leading to both HIF-1 dependent activation of pro-metastatic genes and hypoxia-mediated selection of highly metastatic tumour cell variants. Through gene expression profiling and functional experiments, we identified the matricellular signalling protein CYR61 and its interaction partners aVb5/ aVb3 integrins as critical mediators of these effects. Furthermore, we found a significant correlation between CYR61 expression and the hypoxic status of a large number of human mammary carcinomas. A positive correlation between increased levels of CYR61 expression and shorter relapse free survival was also identified in breast cancer patients treated with adjuvant chemotherapy. Together, these results identify CYR61 and aVb5/aVb3 integrins as critical mediators of metastasis and potential therapeutic targets to improve outcome in patients with post-radiation tumour recurrences. Finally, although inhibition of angiogenesis is local in this setting, our data warrant close monitoring of tumour progression in patients under anti-angiogenic therapy.
Resumo:
A mixture of 3 MAbs directed against 3 different CEA epitopes was radiolabelled with 131I and used for the treatment of a human colon carcinoma transplanted s.c. into nude mice. Intact MAbs and F(ab')2 fragments were mixed because it had been shown by autoradiography that these 2 antibody forms can penetrate into different areas of the tumor nodule. Ten days after transplantation of colon tumor T380 a single dose of 600 microCi of 131I MAbs was injected i.v. The tumor grafts were well established (as evidenced by exponential growth in untreated mice) and their size continued to increase up to 6 days after radiolabelled antibody injection. Tumor shrinking was then observed lasting for 4-12 weeks. In a control group injected with 600 microCi of 131I coupled to irrelevant monoclonal IgG, tumor growth was delayed, but no regression was observed. Tumors of mice injected with the corresponding amount of unlabelled antibodies grew like those of untreated mice. Based on measurements of the effective whole-body half-life of injected 131I, the mean radiation dose received by the animals was calculated to be 382 rads for the antibody group and 478 rads for the normal IgG controls. The genetically immunodeficient animals exhibited no increase in mortality, and only limited bone-marrow toxicity was observed. Direct measurement of radioactivity in mice dissected 1, 3 and 7 days after 131I-MAb injection showed that 25, 7.2 and 2.2% of injected dose were recovered per gram of tumor, the mean radiation dose delivered to the tumor being thus more than 5,000 rads. These experiments show that therapeutic doses of radioactivity can be selectively directed to human colon carcinoma by i.v. injection of 131I-labelled anti-CEA MAbs.
Resumo:
The fight against doping is mainly focused on direct detection, using analytical methods for the detection of doping agents in biological samples. However, the World Anti-Doping Code also defines doping as possession, administration or attempted administration of prohibited substances or methods, trafficking or attempted trafficking in any prohibited substance or methods. As these issues correspond to criminal investigation, a forensic approach can help assessing potential violation of these rules. In the context of a rowing competition, genetic analyses were conducted on biological samples collected in infusion apparatus, bags and tubing in order to obtain DNA profiles. As no database of athletes' DNA profiles was available, the use of information from the location detection as well as contextual information were key to determine a population of suspected athletes and to obtain reference DNA profiles for comparison. Analysis of samples from infusion systems provided 8 different DNA profiles. The comparison between these profiles and 8 reference profiles from suspected athletes could not be distinguished. This case-study is one of the first where a forensic approach was applied for anti-doping purposes. Based on this investigation, the International Rowing Federation authorities decided to ban not only the incriminated athletes, but also the coaches and officials for 2 years.
Resumo:
Early revascularization of pancreatic islet cells after transplantation is crucial for engraftment, and it has been suggested that vascular endothelial growth factor-A (VEGF-A) plays a significant role in this process. Although VEGF gene therapy can improve angiogenesis, uncontrolled VEGF secretion can lead to vascular tumor formation. Here we have explored the role of temporal VEGF expression, controlled by a tetracycline (TC)-regulated promoter, on revascularization and engraftment of genetically modified beta cells following transplantation. To this end, we modified the CDM3D beta cell line using a lentiviral vector to promote secretion of VEGF-A either in a TC-regulated (TET cells) or a constitutive (PGK cells) manner. VEGF secretion, angiogenesis, cell proliferation, and stimulated insulin secretion were assessed in vitro. VEGF secretion was increased in TET and PGK cells, and VEGF delivery resulted in angiogenesis, whereas addition of TC inhibited these processes. Insulin secretion by the three cell types was similar. We used a syngeneic mouse model of transplantation to assess the effects of this controlled VEGF expression in vivo. Time to normoglycemia, intraperitoneal glucose tolerance test, graft vascular density, and cellular mass were evaluated. Increased expression of VEGF resulted in significantly better revascularization and engraftment after transplantation when compared to control cells. In vivo, there was a significant increase in vascular density in grafted TET and PGK cells versus control cells. Moreover, the time for diabetic mice to return to normoglycemia and the stimulated plasma glucose clearance were also significantly accelerated in mice transplanted with TET and PGK cells when compared to control cells. VEGF was only needed during the first 2-3 weeks after transplantation; when removed, normoglycemia and graft vascularization were maintained. TC-treated mice grafted with TC-treated cells failed to restore normoglycemia. This approach allowed us to switch off VEGF secretion when the desired effects had been achieved. TC-regulated temporal expression of VEGF using a gene therapy approach presents a novel way to improve early revascularization and engraftment after islet cell transplantation.
Resumo:
The concept of antibody-mediated targeting of antigenic MHC/peptide complexes on tumor cells in order to sensitize them to T-lymphocyte cytotoxicity represents an attractive new immunotherapy strategy. In vitro experiments have shown that an antibody chemically conjugated or fused to monomeric MHC/peptide can be oligomerized on the surface of tumor cells, rendering them susceptible to efficient lysis by MHC-peptide restricted specific T-cell clones. However, this strategy has not yet been tested entirely in vivo in immunocompetent animals. To this aim, we took advantage of OT-1 mice which have a transgenic T-cell receptor specific for the ovalbumin (ova) immunodominant peptide (257-264) expressed in the context of the MHC class I H-2K(b). We prepared and characterized conjugates between the Fab' fragment from a high-affinity monoclonal antibody to carcinoembryonic antigen (CEA) and the H-2K(b) /ova peptide complex. First, we showed in OT-1 mice that the grafting and growth of a syngeneic colon carcinoma line transfected with CEA could be specifically inhibited by systemic injections of the conjugate. Next, using CEA transgenic C57BL/6 mice adoptively transferred with OT-1 spleen cells and immunized with ovalbumin, we demonstrated that systemic injections of the anti-CEA-H-2K(b) /ova conjugate could induce specific growth inhibition and regression of well-established, palpable subcutaneous grafts from the syngeneic CEA-transfected colon carcinoma line. These results, obtained in a well-characterized syngeneic carcinoma model, demonstrate that the antibody-MHC/peptide strategy can function in vivo. Further preclinical experimental studies, using an anti-viral T-cell response, will be performed before this new form of immunotherapy can be considered for clinical use.