942 resultados para adsorption isotherms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The destructive impact of improper disposal of heavy metals in the environment increases as a direct result of population explosion, urbanization and industrial expansion and technological developments. Argil are potential materials for adsorption of inorganic and the pelletization of it is required for use in adsorptive columns of fixed bed. The low cost and the possibility of regeneration makes these materials attractive for use in the purification process, capable of removing inorganic compounds in contaminated aquatic environments. In this work was made pellets of a mixture of dolomite and montmorillonite by wet agglomeration, in different percentages. The removal of Pb (II) was investigated through experimental studies, and was modeled by kinetic models and isotherms of adsorption. The materials were characterized using the techniques of XRD, TG / DTA, FT-IR, and surface area by BET method. The results showed the adsorption efficiency of the contaminant by the composite material studied in synthetic solution. The study found that the adsorption follows the Langmuir model, and the kinetics of adsorption follows the model of pseudosecond order

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MCM-41 mesoporous synthesis was done using rice hulls ash and chrysotile as natural alternative silica sources. For the using of these sources, chemical and thermic treatments were done in both materials. After chemical and thermic treatments, these materials were employed on the MCM-41 mesoctructures synthesis. The natural materials treated and employed in the synthesis were characterized by several techniques such as X-ray diffraction, N2 adsorption and desorption, scanning electronic microscopy and thermogravimetric analysis. MCM-41 standart samples synthetized with aerosil 200 commercial sílica were used to evaluation. The formed material from rice hulls ash showed values from BET specific area about 468 m².g-1, N2 adsorption and desorption isotherms and loss mass similar to reference materials. The silica from chrysotile calcined and leached was employed to mesoporous materials synthesis. The BET specific area showed values about 700 m².g-1, N2 adsorption and desorption isotherms type IV and loss mass similar to mesoporous materials. The formed material from calcined and leached chrysotile, without calcination, applied to phenol remotion carried high performance liquid chromatography and evaluated with organophilic clays with different treatments. By the characterization techniques were proved that mesoporous materials with lesser order that reference samples. The material formed from rice hulls ash without the calcination step achieved better adsorption results than organophilic clays

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fixed bed CO2 adsorption tests were carried out in model flue-gas streams onto two commercial activated carbons, namely Filtrasorb 400 and Nuchar RGC30, at 303 K, 323 K and 353 K. Thermodynamic adsorption results highlighted that the presence of a narrower micropore size distribution with a prevailing contribution of very small pore diameters, observed for Filtrasorb 400, is a key factor in determining a higher CO2 capture capacity, mostly at low temperature. These experimental evidences were also corroborated by the higher value of the isosteric heat derived for Filtrasorb 400, testifying stronger interactions with CO2 molecules with respect to Nuchar RGC30. Dynamic adsorption results on the investigated sorbents highlighted the important role played by both a greater contribution of mesopores and the presence of wider micropores for Nuchar RGC30 in establishing faster capture kinetics with respect to Filtrasorb 400, in particular at 303 K. Furthermore, the modeling analysis of 15% CO2 breakthrough curves allowed identifying intraparticle diffusion as the rate-determining step of the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New bone chars for fluoride adsorption from drinking water have been synthetized via metallic doping using aluminum and iron salts. A detailed statistical analysis of the metal doping process using the signal-to-noise ratios from Taguchi's experimental designs and its impact on the fluoride adsorption properties of modified bone chars have been performed. The best conditions, including the proper metallic salt, for metal doping were identified to improve the fluoride uptakes of modified bone chars. Results showed that the fluoride adsorption properties of bone chars can be enhanced up to 600% using aluminum sulfate for the surface modification. This aluminum-based adsorbent showed an adsorption capacity of 31 mg/g, which outperformed the fluoride uptakes reported for several adsorbents. Surface interactions involved in the defluoridation process were established using FTIR, DRX and XPS analysis. Defluoridation using the metal-doped bone chars occurred via an ion exchange process between fluoride ions and the hydroxyl groups on the adsorbent surface, whereas the Al(OH)xFy, FexFy, and CaF2 interactions could play also an important role in the removal process. These metal-doped adsorbents anticipate a promising behavior in water treatment, especially in developing countries where the efficiency – cost tradeoff is crucial for implementing new defluoridation technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integrated analysis of naproxen adsorption on bone char in batch and packed-bed column conditions has been performed. Kinetic, thermodynamic and breakthrough parameters have been calculated using adsorption models and artificial neural networks. Results show that naproxen removal using bone char in batch conditions is a feasible and effective process, which could involve electrostatic and non-electrostatic interactions depending mainly on pH conditions. However, the application of packed-bed column for naproxen adsorption on bone char is not effective for the treatment of diluted solutions due to the low degree of adsorbent utilization (below 4%) at tested operating conditions. The proposed mechanism for naproxen removal using bone char could include a complexation process via phosphate and naproxen, hydrogen bonding and the possibility of hydrophobic interactions via π–π electron. This study highlights the relevance of performing an integrated analysis of adsorbent effectiveness in batch and dynamic conditions to establish the best process configuration for the removal of emerging water pollutants such as pharmaceuticals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of synthesis gas has received renewed attention due to demand for renewable energies to reduce the emissions of gases responsible for enhanced greenhouse effect. This work was carried out in order to synthesize, characterize and evaluate the implementation of nickel catalysts on MCM-41 in dry reforming reactions of methane. The mesoporous molecular sieves were synthesized using as silica sources the tetraethyl orthosilicate (TEOS) and residual glass powder (PV). The sieves were impregnated with 10% nickel to obtain the metallic catalysts (Ni/MCM-41). These materials were calcined and characterized by Thermogravimetric Analysis (TG), Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Temperature-Programmed Reduction (TPR) and N2 Adsorption/Desorption isotherms (BET/BJH). The catalytic properties of the samples were evaluated in methane dry reforming with CO2 in order to produce synthesis gas to be used in the petrochemical industry. The materials characterized showed hexagonal structure characteristic of mesoporous material MCM-41 type, being maintained after impregnation with nickel. The samples presented variations in the specific surface area, average volume and diameter of pores based on the type of interaction between the nickel and the mesoporous support. The result of the the catalytic tests showed conversions about 91% CO2, 86% CH4, yelds about 85% CO and 81% H2 to Ni/MCM-41_TEOS_C, and conversions about 87% CO2, 82% CH4, yelds about 70% CO and 59% H2 to Ni/MCM-41_PV_C. The similar performance confirms that the TEOS can be replaced by a less noble materials

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomass is the world’s most important renewable carbon source, whose major component, carbohydrates, can be valorized by transformation into biofuels and high value-added chemicals. Among the latter, 5-hydroxymethylfurfural (HMF), obtained by C6 carbohydrates dehydration, is a versatile and key intermediate for the production of a large spectrum of biobased chemicals. Different catalytic systems have been evaluated for HMF production, mostly based on heterogeneous catalysis as alternative to the use of conventional mineral acids [1]. Moreover, niobium oxide has shown interesting properties as acid catalyst for dehydration of sugars [2-3]. On the other hand, the high surface area and large pore size of mesoporous solids make them suitable for many catalytic processes. In the present work, the dehydration of glucose to HMF has been evaluated by using different mesoporous mixed Nb2O5-ZrO2 in a biphasic water–Methyl Isobutyl Ketone (MIBK) solvent system to avoid the HMF degradation. Different experimental parameters, such as reaction temperature and time, as well as the addition of CaCl2 have been studied in order to maximize the HMF yield.N2 adsorption-desorption isotherms have corroborated the mesostructured character of catalysts, being all isotherms of Type IV according to the IUPAC classification. BET surface area decreases for catalysts with higher Zr content (Table 1). Likewise, pore volume and average pore diameter values diminish after Zr incorporation. Concerning the acid properties, a clear correlation between Nb and acidity can be observed, in such a way that total acidity, as deduced from NH3-TPD, decreases when the Zr content rises, and consequently the amount of Nb is reduced.These mesoporous Nb-Zr catalysts have been tested in the dehydration of glucose to HMF at 175 ºC under batch operation in aqueous solution, using MIBK as co-solvent. It can be observed that both glucose conversion and HMF yield increase with the Nb content, being maximum (90% and 36%, respectively) after 90 minutes for Nb2O5. This trend changes when CaCl2 is added to the reaction medium, improving the catalytic performance of mixed oxides and ZrO2, but Nb2O5 maintains similar results than without salt addition. This could be justified by the interaction between CaCl2 and Lewis acid sites, since zirconium oxide possesses a higher amount of this acid sites type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The search for cleaner processes is one of the major challenges in modern chemical industries. In this context clay derived materials are environmentally friendly catalysts that can be easily tailored to optimize their catalytic activity for a precise reaction of interest. Furthermore, clay-based catalysts can be easily separated, recovered and reused and their versatility, low cost, high catalytic activity and/or selectivity render them very attractive materials. Considering that the stability towards water vapour is a crucial aspect for catalytic performance and reuse of the catalysts, we present a study of the pore structure stability, in the presence of water vapour, of clay catalysts prepared by acid activation with HCl solutions and ion-exchange with sodium, aluminium and iron, from a natural clay collected at Serra de Dentro (Porto Santo Island, Portugal) [1]. For elucidating the influence of water vapour on the pore structure stability, water vapour adsorption- -desorption isotherm, at 298 K, was determined on each sample by gravimetric method as well as n-pentane adsorption−desorption isotherms, at 298 K, which were determined before and after the corresponding water adsorption-desorption isotherms. Prior to the measurements, the samples were outgassed during 5 h at 473 K and the adsorptives were outgassed by repeated freeze–thaw cycles. The results to be reported in the communication allow us to state that, upon contact with water vapour, the less acid activated catalysts suffered some reduction in pore volume reflecting changes in the pore structure, while the more acid activated catalysts and those prepared by ion-exchange presented excellent stability upon one cycle of water vapour adsorption-desorption. The results are corroborated by nitrogen adsorption-desorption isotherms determined, at 77 K, before and after the water and n-pentane adsorption-desorption measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrothermal carbonization can be considered an environmental friendly process for the production of carbon materials with tailored properties, such as regular porous structure and specific surface chemistry. This process is easy to perform and uses mild temperatures without the use of solvents or gases, which results in a positive environmental balance when compared with the usual pyrolysis process [1]. Diabetes affects more than 152 million people in Europe and is on the rise all over the World. Metformin is one of the most used drugs to treat type 2 diabetes. This drug is an endocrine disruptor with a potential negative impact in the environment due to the fact that metformin is almost not metabolized in the human body and the incorrect disposal into the domestic garbage. Another relevant aspect is the danger of overdose intake of the drug that can lead to lactic acidosis, which in extreme cases can be lethal. The work now reported study the in vitro adsorption of metformin onto activated carbons using simulated gastric and intestinal fluids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activated carbon (AC) has proved to be an effective adsorbent for the removal of an assortment of organic and inorganic pollutants from aqueous or gaseous media. However, the pursuit for more effective and cheaper AC is still very active and a diversity of textural and chemical treatments are described as a way to expand their applications. It is well known that the surface area and surface chemistry of AC strongly affect their adsorption capacity [1-3]. In particular, an increase in the nitrogen content has been related to an increase of the basic character and also to the development of the porous structure. In most published work this was achieved through an AC post treatment, including either a reaction with nitrogen containing reagents, such as ammonia, nitric acid, or a diversity of amines. However, the AC prepared directly from a nitrogen rich precursor through a physical or chemical activation is referred to as presenting the best characteristics, namely high nitrogen content, high basic character, low nitrogen leaching and also a good thermal stability [4]. To improve the AC adsorption capacities for acidic pesticide removal from the aqueous phase, we intend to improve the porous structure and introduce nitrogenated groups directly into the AC matrix, using different co-adjuvant activating agents as a nitrogen source, by chemical activation, with potassium hydroxide, of cork or poly(ethyleneterephthalate) (PET) precursors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objectivo principal deste trabalho de mestrado consistiu em avaliar a potencial utilização de materiais adsorventes, nomeadamente, de carvões activados (AC) preparados por activação química com KOH, a partir de PET reciclado, e de materiais com estrutura mesoporosa ordenada, do tipo MCM-41 e SBA-15, na remoção de ácido 4 - cloro - 2 - metilfenoxiacético (MCPA) e de azul de metileno (MB), presentes nas águas. Nesta tese apresentam-se estudos de preparação e caracterização de materiais micro e mesoporosos e também estudos de avaliação da capacidade adsortiva em fase líquida. Prepararam-se três materiais microporosos, nomeadamente, PET-2-700, PET-2-700ox (AC oxidado) e PET-2-700red (AC reduzido), dois materiais constituídos exclusivamente por mesoporos, Si-MCM-41 e Ti-MCM-41-50 e dois materiais contendo maioritariamente mesoporos, mas que também possuem alguma microporosidade, tais corno, Si-SBA-15 e Ti-SBA-15-50. A caracterização textural dos adsorventes foi inferida por adsorção de azoto a 77K e por de difracção de raios X. Recorreu-se a três métodos de análise das isotérmicas, nomeadamente, Dubinin-Radushkevich, Brunauer-Ernrnett-Teller e alfa-s (as). A caracterização química dos AC foi realizada recorrendo-se a técnicas de análise elementar (AE) e espectroscopia de infravermelho com transformadas de Fourier (FTIR) e à determinação do ponto de carga zero. Os três carvões activados possuem valores de área superficial externa idênticos, o PET-2-700 possui o maior volume microporoso e o PET-2-700ox exibe o maior diâmetro de poros. Por outro lado, o PET-2-700ox possui um carácter fortemente ácido, o PET-2-700 exibe carácter ligeiramente ácido e o PET-2-700red apresenta propriedades ligeiramente alcalinas. Com base na AE, todas as amostras possuem percentagens de carbono elevadas, sendo que o PET-2-700red apresenta o valor mais elevado. Os resultados obtidos para a caracterização estrutural dos revelaram a obtenção de materiais mesoporosos de alta qualidade, definida pela elevada regularidade e uniformidade da estrutura porosa. A análise dos parâmetros de caracterização textura! permitiu inferir que os quatro materiais mesoporosos possuem valores de área superficial elevados, e que os materiais SBA-15 apresentam valores de volume poroso total e de tamanho de poros superiores aos manifestados pelos MCM-41. A incorporação de titânio não conduziu a uma perda significativa de qualidade dos materiais substituídos em relação às correspondentes amostras de sílica. Efectuaram-se estudos de adsorção em fase líquida de forma a avaliar a possível aplicação dos vários adsorventes na remoção de MCPA e de MB de efluentes líquidos. concluiu-se que o tempo de equilíbrio de 72 horas seria adequado e que a capacidade de adsorção dos vários AC era superior em meio ácido. Com base nas isotérmicas de adsorção do MCPA e do MB e na aplicação da representação de Langmuir e de Freundlich, foi possível concluir que o PET-2-700 possui a maior capacidade de adsorção do MCPA, 1.42 mmol/g, enquanto que o PET-2-700ox revelou a maior capacidade de adsorção do MB, 1.43 mmol/g. Na realidade, os materiais microporosos estudados apresentaram percentagens de remoção elevadas, tanto do MCPA como do MB. Relativamente aos materiais mesoporosos ordenados preparados neste trabalho, a percentagem de remoção de para os poluentes em estudo foi relativamente baixa, constatando-se que nesta fase dos estudos não constituem uma alternativa viável à utilização dos AC. No entanto, uma funcionalização criteriosa dos mesmos pode eventualmente proporcionar um aumento da capacidade adsortiva. ABSTRACT: The work presented in this master thesis, consisted of evaluating the potential use of different adsorbents materials, like activated carbon (AC) prepared by chemical activation with KOH, from recycled poly (ethylene terephthalate) (PET) and materials with ordered mesoporous structure such as MCM-41 and SBA-15, for removing acid 4-chlorine-2-metilfenoxiacétic and methylene blue from aqueous phase. We had prepared three microporous materials, PET-200-700, PET-2-700ox (AC oxidized) and PET-2-700red (reduced AC), two materials consisting exclusively of mesopores, Si-MCM-41 and Ti-MCM-41-50 and two materials containing mainly mesopores, but also having some microporosity, such as Si-SBA-15 and Ti-SBA-15-50. The textural characterization of the adsorbents was inferred by nitrogen adsorption at 77K and X-ray diffraction. Three methods were used to analyse the isotherms, namely, Dubinin-Radushkevich, Brunauer-Emmett-Teller and alpha-s (as). The chemical characterization of AC was performed using the elementary analysis, Fourier transform infrared spectroscopy (FTIR) and determination of the point of zero charge. Concerning the AC, the three present almost the same externa! surface area, PET-2-700 has a high micropore volume and PET-2-700ox shows the largest pore size diameter. On the other hand, PET-2-700ox had a strong acid character, PET-2-700 exhibits just a slightly acid character and PET-2-700red presents alkaline properties. The AE analysis allows confirming the high carbon content of theses AC, with PET-2-700red exhibiting the highest carbon proportion. The results from the structural characterization of the mesoporous materials, had disclosed the attainment of materials with high quality, defined by the raised regularity and uniformity of the porous structure. The analysis of the textural parameters allowed inferring that the four studied mesoporous materials possess high superficial area. The SBA-15 type materials present higher values of total porous volume and pores size diameter as the MCM-41. Also, the titanium incorporation did not lead to a significant loss of quality of the materials substituted in relation to the corresponding silica samples. The adsorption studies in liquid phase allow evaluating the possibility of using the different adsorbents for the MCPA and the MB removal. The kinetic studies had allowed to state the equilibrium time as 72 hours and a higher adsorption capacity was achieved in an acid medium. The influence of the pH of the medium, on the MCPA adsorption was evaluated. The MCPA and MB isotherms were analysed based on the Langmuir and Freundlich equation, the representations presented an excellent linearity, indicating the applicability of these equations to these systems. Also, it allows concluded that PET-2-700 had a higher adsorption capacity for MCPA, 1.42 mmol/g, and PET-2-700ox had a higher adsorption capacity for MB, 1.43 mmol/g. The AC used presented high removal percentages for MCPA and MB. Concerning the mesoporous materials prepared in this work, the percentage removal for the pollutants in study was relatively low, and evidencing that at the moment these mesoporous materials do not constitute a viable alternative to the AC. However, an astute funcionalisation of the same ones can, eventually provide an increase of the adsorption capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pollution of water bodies is one of the most common environmental problems today. Organic pollutants are one of the main drawbacks in this natural resource, among which the following stand out long-lived dyes, pharmaceuticals, and pesticides. This research aims at obtaining nanocomposites based on polycaprolactone-chitosan (PCL-CS) electrospun nanofibers (NFs) containing TiO2 nanoparticles (NPs) for the adsorption and photocatalytic degradation of organic pollutants, using Rhodamine B as a model. The fabricated hybrid materials were characterized by FT-IR, TGA, DSC, SEM, TEM, tensile properties, and the contact angle of water drops. The photoactivity of the NFs was investigated using a batch-type system by following UV-Vis absorbance and fluorescence of rhodamine B (RhB). For this purpose, TiO2NPs were successfully ex-situ incorporated into the polymer matrix promoting good mechanical properties and higher hydrophilicity of the material. The results showed that CS in the NFs increased the absorption and degradation of RhB by the TiO2NPs. CS attracted the pollutant molecules to the active sites vicinity of TiO2NPs, favoring initial adsorption and degradation. In other words, a bait-hook-and-destroy effect was evidenced. It also was demonstrated that the sensitization of TiO2 by organic dyes (e.g., perylene derivative) considerably improves the photocatalytic activity under visible radiation, allowing the use of low amounts of TiO2. (≈0.05 g/1 g of fiber). Hence, the current study is expected to contribute with an environmentally friendly green alternative solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration.